The Menkes copper-translocating P-type ATPase (ATP7A) is a critical copper transport protein functioning in systemic copper absorption and supply of copper to cuproenzymes in the secretory pathway. Mutations in ATP7A can lead to the usually lethal Menkes disease. ATP7A function is regulated by copper-responsive trafficking between the trans-Golgi Network and the plasma membrane. We have previously reported basal and copper-responsive kinase phosphorylation of ATP7A but the specific phosphorylation sites had not been identified. As copper stimulates both trafficking and phosphorylation of ATP7A we aimed to identify all the specific phosphosites and to determine whether trafficking and phosphorylation are linked. We identified twenty in vivo phosphorylation sites in the human ATP7A and eight in hamster, all clustered within the N- and C-terminal cytosolic domains. Eight sites were copper-responsive and hence candidates for regulating copper-responsive trafficking or catalytic activity. Mutagenesis of the copper-responsive phosphorylation site Serine-1469 resulted in mislocalization of ATP7A in the presence of added copper in both polarized (Madin Darby canine kidney) and non-polarized (Chinese Hamster Ovary) cells, strongly suggesting that phosphorylation of specific serine residues is required for copper-responsive ATP7A trafficking to the plasma membrane. A constitutively phosphorylated site, Serine-1432, when mutated to alanine also resulted in mislocalization in the presence of added copper in polarized Madin Darby kidney cells. These studies demonstrate that phosphorylation of specific serine residues in ATP7A regulates its sub-cellular localization and hence function and will facilitate identification of the kinases and signaling pathways involved in regulating this pivotal copper transporter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2009.06.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!