A gas chromatographic ion trap mass spectrometry (GC-ITMS) method was developed for the determination of 11 new generation fungicides (benalaxyl, benalaxyl-M, boscalid, cyazofamid, famoxadone, fenamidone, fluquinconazole, iprovalicarb, pyraclostrobin, trifloxystrobin and zoxamide) in grapes and wines. Samples were extracted with ethyl acetate:hexane (1:1, v/v) and cleaned-up with graphitized carbon black/primary secondary amine (GCB/PSA) solid-phase extraction (SPE) cartridges using acetonitrile:toluene (3:1, v/v) as eluent. The addition of analyte protectants (3-ethoxy-1,2-propanediol, d-sorbitol and l-gulonic acid gamma-lactone) in the final extracts allowed to avoid the matrix-induced response enhancement effect on quantitation process with absolute recoveries ca. 100%. Precision (expressed as relative standard deviation) was lower than 16% for all fungicides. Limits of detection and quantitation were lower than 0.01 mg/kg or mg/L, except for cyazofamid, much smaller in all cases than maximum residue levels (MRLs) established by European Union for grapes and by Switzerland and Italy for wines. The proposed method was applied to determine fungicide residues in three different white grapes for vinification produced in Ribeiro area in Galicia (NW Spain), as well as in their corresponding final wines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2009.06.046 | DOI Listing |
Food Chem X
January 2025
College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
This study investigated the effects of γ-polyglutamic acid (PGA) and alginic acid (ALA) on grapes and wines. Marselan grapes were utilized to assess the accumulation and synthesis of phenolic compounds and antioxidant activity. The 0.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.
The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, P.R. China.
Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.
View Article and Find Full Text PDFPLoS One
January 2025
South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa.
Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Biology, University of Padova, 35131 Padova, Italy. Electronic address:
The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!