Objective: To investigate the pharmacological effects and underlying mechanism of azidothymidine (AZT) on human glioblastoma cells in vitro.
Methods: The telomerase activity of human glioblastoma TJ905 cells was determined by TRAP assay after 24 hrs' incubation with 50, 100, 200 micromol/L AZT and control vehicle solution. Colony formation efficiencies of the cells were recorded. Cells of the 1st, 3rd and 6th generations were harvested, followed by evaluations of cyclin A protein expression by Western blot, cell cycle distribution by flow cytometry, apoptotic level by single cell gel electrophoresis and proliferation index by Ki-67 immunocytochemical staining.
Results: AZT inhibited telomerase activity of TJ905 cells. Cyclin A expression levels in the cells treated with 50 and 100 micromol/L AZT were significantly lower than controls (P < 0.01), and down-regulation of the expression was in a dose- and time-dependent manner. Compared with controls, G(0)/G(1) phase cells were obviously decreased (P < 0.05 approximately 0.01) and S phase cells significantly increased (P < 0.05 approximately 0.01) after treatment with 50, 100 and 200 micromol/L AZT. The cell numbers of G(0)/G(1) and S phases at the 1st generation of above three treated groups changed in a dose-dependent manner, whereas S phase cells increases in all AZT treatment groups and G(0)/G(1) phase cell decrease in group treated with 50 micromol/L AZT were also in a time-dependent manner. Both the apoptotic cells of the 1st and 6th generations of all AZT treatment groups were significantly more than controls (P < 0.05 approximately 0.01), their numbers of the 6th generations of the three groups increased with AZT concentration (P < 0.05 approximately 0.01), and all of them were more than the 1st and 3rd generations of the same dosage group (P < 0.05 approximately 0.01). Colony formation efficiencies and Ki-67 labeling indexes of the three AZT treatment groups were distinctly lower than controls (P < 0.01), and they were also decreased with the elevation of AZT concentration and/or the elongation of the incubating time. The difference of any above parameter had no significance among the 1st, 3rd and 6th generations of control group (P > 0.05).
Conclusion: AZT blocks S/G(2) conversion of TJ905 cells by inhibition of telomerase activity and cyclin A expression, leading to an enhancement of apoptosis and suppression of cell proliferation.
Download full-text PDF |
Source |
---|
Biochem Biophys Res Commun
October 1975
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!