Inhibitors of specific cellular pathways are useful for investigating the roles of proteins of unknown function, and for selectively inhibiting a protein in complex pathways to uncover its relationships to other proteins in this and other interacting pathways. This appendix provides links to Web sites that describe cellular processes and pathways along with the various classes of inhibitors, numerous references, downloadable diagrams, and technical tips.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471142727.mba06s87 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFMol Divers
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!