Using exciton-coupled circular dichroism (ECCD) spectroscopy, our lab was able to differentiate between the two enantiomers of methamphetamine using a commercially available porphyrin tweezer as an achiral host. The host-guest complex formed with (+)-(S)-methamphetamine produced a negative bisignate-shaped ECCD spectrum, whereas the complex formed with (-)-(R)-methamphetamine produced a positive one. This sensitive technique could serve as an alternative method for the enantiodiscrimination of chiral methamphetamine, a commonly abused drug in the United States.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.20752DOI Listing

Publication Analysis

Top Keywords

circular dichroism
8
porphyrin tweezer
8
complex formed
8
enantiodiscrimination methamphetamine
4
methamphetamine circular
4
dichroism porphyrin
4
tweezer exciton-coupled
4
exciton-coupled circular
4
dichroism eccd
4
eccd spectroscopy
4

Similar Publications

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.

View Article and Find Full Text PDF

The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.

View Article and Find Full Text PDF

Antimicrobial Potential of Secalonic Acids from Arctic-Derived INA 01369.

Antibiotics (Basel)

January 2025

Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.

In this study, two compounds have been isolated from the Arctic-derived fungus INA 13460. Structural elucidation, performed using 2D NMR and HR-ESIMS data, has identified the compounds as stereoisomers of secalonic acids, dimeric tetrahydroxanthones. The absolute configurations of these stereoisomers have been determined through conformational NMR analysis and circular dichroism spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!