During production of therapeutic monoclonal antibodies (mAbs) in mammalian cell culture, it is important to ensure that viral impurities and potential viral contaminants will be removed during downstream purification. Anion exchange chromatography provides a high degree of virus removal from mAb feedstocks, but the mechanism by which this is achieved has not been characterized. In this work, we have investigated the binding of three viruses to Q sepharose fast flow (QSFF) resin to determine the degree to which electrostatic interactions are responsible for viral clearance by this process. We first used a chromatofocusing technique to determine the isoelectric points of the viruses and established that they are negatively charged under standard QSFF conditions. We then determined that virus removal by this chromatography resin is strongly disrupted by the presence of high salt concentrations or by the absence of the positively charged Q ligand, indicating that binding of the virus to the resin is primarily due to electrostatic forces, and that any non-electrostatic interactions which may be present are not sufficient to provide virus removal. Finally, we determined the binding profile of a virus in a QSFF column after a viral clearance process. These data indicate that virus particles generally behave similarly to proteins, but they also illustrate the high degree of performance necessary to achieve several logs of virus reduction. Overall, this mechanistic understanding of an important viral clearance process provides the foundation for the development of science-based process validation strategies to ensure viral safety of biotechnology products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.22416DOI Listing

Publication Analysis

Top Keywords

virus removal
16
viral clearance
12
clearance process
12
virus
8
sepharose fast
8
fast flow
8
ensure viral
8
high degree
8
viral
6
understanding mechanism
4

Similar Publications

Modeling virus filtration: Materials, applications, and mechanism.

iScience

January 2025

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development.

View Article and Find Full Text PDF

In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.

View Article and Find Full Text PDF

Mechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.

View Article and Find Full Text PDF

Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.

Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.

View Article and Find Full Text PDF

Diverse strategies utilized by coronaviruses to evade antiviral responses and suppress pyroptosis.

Int J Biol Macromol

January 2025

Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China. Electronic address:

Viral infections trigger inflammasome-mediated caspase-1 activation. Nevertheless, limited understanding exists regarding how viruses use the active caspase-1 to evade host immune response. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of coronaviruses (CoVs) to illustrate the intricate regulation of CoVs to combat IFN-I signaling and pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!