Store-operated Ca(2+) channels (SOCs) are Ca(2+) influx channels at the plasma membrane whose opening is determined by the level of Ca(2+) stored in the endoplasmic reticulum lumen. SOCs are activated in response to receptor-mediated or passive depletion of ER Ca(2+) to regulate many Ca(2+)-dependent cellular functions. Early work implicated the TRPC channels as SOCs. More recently, it was found that the Orai channels mediate the CRAC current and that the Ca(2+) binding protein STIM1 functions as the ER Ca(2+) sensor that mediates activation of the SOCs in response to depletion of ER Ca(2+). Key questions are whether both TRPC and Orai channels are opened by STIM1 and the molecular mechanism by which STIM1 opens the SOCs. Ample biochemical and functional evidence indicate interaction of the TRPC channels with STIM1. Furthermore, it was found that STIM1 gates TRPC channels by electrostatic interaction of STIM1(K684,K685) in the polybasic domain of STIM1 with two negative charges (aspartates or glutamates) that are conserved in all TRPC channels. Charge mutants of STIM1(K684,K685) and TRPC1(D639,D640) and TRPC3(D697,D698) were used to develop further direct evidence for the function of TRPC channels as SOCs. The evidence in favor of TRPC channels as SOCs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/chan.3.4.9198 | DOI Listing |
Cells
December 2024
Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Background: TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown.
View Article and Find Full Text PDFCells
December 2024
Department of Cell Biology, Jinan University, Guangzhou 510632, China.
Cancer treatments, including cytotoxic therapy, often result in male infertility, necessitating the development of safe and effective strategies to preserve male reproductive potential during chemotherapy. Notably, our study uncovers the potential of repurposing riluzole, an FDA-approved drug for amyotrophic lateral sclerosis (ALS), in enhancing spermatogenesis. Hence, this research aims to explore the feasibility of utilizing riluzole to alleviate male infertility induced by busulfan (BSF), a commonly used chemotherapy drug.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan. Electronic address:
Cancer stem cells (CSCs) cause therapy-resistance and recurrence, therefore an establishment of therapeutic approaches targeting CSCs is essential for eradicating cancers; however, a lot of aspects of the mechanisms of CSCs generation remain unclear. We previously demonstrated that human glioblastoma cell lines cultured on double-network (DN) hydrogel were rapidly reprogrammed into CSCs. To elucidate molecular mechanisms underlying CSCs generation, we here focused on the elastic modulus of hydrogels mimicking the stiffness of tumor tissues.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. Electronic address:
Transient Receptor Potential Canonical (TRPC) channels have received more attention in recent years for their role of in the pathophysiology of chronic pain. These non-selective cation channels, which are predominantly present on cell membranes, play a pivotal role in regulating both physiological and pathological processes. Research advances have shown the critical role of TRPC channels in a variety of chronic pain, including neuropathic, inflammatory, and visceral pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!