Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The majority of the biological effects of estrogens in the reproductive tract are mediated by estrogen receptor (ER)alpha, which regulates transcription by several mechanisms. Because the tissue-specific effects of some ERalpha ligands may be caused by tissue-specific transcriptional mechanisms of ERalpha, we aimed to identify the contribution of DNA recognition to these mechanisms in two clinically important target organs, namely uterus and liver. We used a genetic mouse model that dissects DNA binding-dependent vs. independent transcriptional regulation elicited by ERalpha. The EAAE mutant harbors amino acid exchanges at four positions of the DNA-binding domain (DBD) of ERalpha. This construct was knocked in the ERalpha gene locus to produce ERalpha((EAAE/EAAE)) mice devoid of a functional ERalpha DBD. The phenotype of the ERalpha((EAAE/EAAE)) mice resembles the general loss-of-function phenotype of alphaER knockout mutant mice with hypoplastic uteri, hemorrhagic ovaries, and impaired mammary gland development. In agreement with this phenotype, the expression pattern of the ERalpha((EAAE/EAAE)) mutant mice in liver obtained by genome-wide gene expression profiling supports the observation of a near-complete loss of estrogen-dependent gene regulation in comparison with the wild type. Further gene expression analyses to validate the results of the microarray data were performed by quantitative RT-PCR. The analyses indicate that both gene activation and repression by estrogen-bound ERalpha rely on an intact DBD in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419145 | PMC |
http://dx.doi.org/10.1210/me.2009-0045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!