The packaging of the eukaryotic genome into chromatin represses gene expression by blocking access of the general transcription machinery to the underlying DNA sequences. Accordingly, eukaryotes have developed a variety of mechanisms to disrupt, alter, or disassemble nucleosomes from promoter regions and open reading frames to allow transcription to occur. Although we know that chromatin disassembly from the yeast PHO5 promoter is triggered by the Pho4 activator, the mechanism is far from clear. Here we show that the Pho4 activator can occupy its nucleosome-bound DNA binding site within the PHO5 promoter. In contrast to the role of Saccharomyces cerevisiae FACT (facilitates chromatin transcription) complex in assembling chromatin within open reading frames, we find that FACT is involved in the disassembly of histones H2A/H2B from the PHO5 promoter during transcriptional induction. We have also discovered that the proteasome is required for efficient chromatin disassembly and transcriptional induction from the PHO5 promoter. Mutants of the degradation function of the proteasome have a defect in recruitment of the Pho4 activator, whereas mutants of the ATPase cap of the proteasome do recruit Pho4 but are still delayed for chromatin assembly. Finally, we rule out the possibility that the proteasome or ATPase cap is driving chromatin disassembly via a potential ATP-dependent chromatin remodeling activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749120PMC
http://dx.doi.org/10.1074/jbc.M109.019562DOI Listing

Publication Analysis

Top Keywords

chromatin disassembly
16
pho5 promoter
16
pho4 activator
12
chromatin
9
disassembly transcriptional
8
open reading
8
reading frames
8
transcriptional induction
8
atpase cap
8
promoter
6

Similar Publications

Metabolism-driven chromatin dynamics: Molecular principles and technological advances.

Mol Cell

January 2025

Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources.

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

Nucleosome repositioning in cardiac reprogramming.

PLoS One

January 2025

Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.

Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!