Separating bone, calcification, and vessels in computer tomography angiography (CTA) allows for a detailed diagnosis of vessel stenosis. This paper presents a new, graph-based technique that solves this difficult problem with high accuracy. The approach requires one native data set and one that is contrast enhanced. On each data set, an attributed level-graph is derived and both graphs are matched by dynamic programming to differentiate between bone, on one hand side, and vessel/calcification on the other hand side. Lumen and calcified regions are then separated by a profile technique. Evaluation is based on data from vessels of pelvis and lower extremities of elderly patients. Due to substantial calcification and motion of patients between and during the acquisitions, the underlying approach is tested on a class of difficult cases. Analysis requires 3-5 min on a Pentium IV 3 GHz for a 700 MByte data set. Among 37 patients, our approach correctly identifies all three components in 80% of cases correctly compared to visual control. Critical inconsistencies with visual inspection were found in 6% of all cases; 70% of these inconsistencies are due to small vessels that have 1) a diameter near the resolution of the CT and 2) are passing next to bony structures. All other remaining deviations are found in an incorrect handling of the iliac artery since the slice thickness is near the diameter of this vessel and since the orientation is not in cranio-caudal direction. Increasing resolution is thus expected to solve many the aforementioned difficulties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2009.2026370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!