Galectin-3 mediates post-ischemic tissue remodeling.

Brain Res

Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave. Madison, WI 53792, USA.

Published: September 2009

AI Article Synopsis

Article Abstract

Galectin-3 (Gal-3) is a member of a class of carbohydrate-binding proteins and plays a role in a number of cellular functions such as cell proliferation, angiogenesis and differentiation. We observed an up-regulated expression of Gal-3 in the ischemic brain following transient middle cerebral artery occlusion in rats. Compared to the brain of sham-operated rats, the expression of Gal-3 was increased in the ischemic striatum at day 1 of reperfusion. The number of Gal-3+ cells in the ischemic brain was further increased at day 2 and day 3, and peaked at day 7 of reperfusion. The up-regulated expression of Gal-3 persisted from day 14 to 2 months after reperfusion. Double staining showed co-localization of Gal-3 with OX-42+ cells, glial fibrillary acidic protein (GFAP)+ and ED1+ cells, suggesting that activated microglia/infiltrating macrophages and activated astrocytes are the primary source of Gal-3 in the ischemic brain. In the in vitro setting, Gal-3 treatment dose-dependently stimulated the proliferation of endothelial cells and neural progenitors. Blockade of Gal-3 activity by infusing a neutralizing antibody against Gal-3 into the ischemic striatum decreased ischemia-induced angiogenesis and the proliferation of neural progenitors. These results suggest that Gal-3 expressed by activated microglia/infiltrating macrophages and astrocytes in the ischemic brain may play a role in post-ischemic tissue remodeling by enhancing angiogenesis and neurogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.06.073DOI Listing

Publication Analysis

Top Keywords

ischemic brain
16
expression gal-3
12
gal-3 ischemic
12
gal-3
10
post-ischemic tissue
8
tissue remodeling
8
up-regulated expression
8
ischemic striatum
8
day reperfusion
8
activated microglia/infiltrating
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!