Localization of cortical dysfunction based on auditory and visual naming performance.

J Int Neuropsychol Soc

Department of Neurology, College of Physicians and Surgeons, Columbia University, 710 West 168th Street, Box 100, New York, New York 10032, USA.

Published: July 2009

Naming is generally considered a left-hemisphere function without precise localization. However, recent cortical stimulation studies demonstrate a modality-related anatomical dissociation, in that anterior temporal stimulation disrupts auditory description naming ("auditory naming") but not visual object naming ("visual naming"), whereas posterior temporal stimulation disrupts naming on both tasks. We hypothesized that patients with anterior temporal abnormalities would exhibit impaired auditory naming, yet normal range visual naming, whereas patients with posterior temporal abnormalities would exhibit impaired performance on both tasks. Thirty-four patients with documented anterior temporal abnormalities and 14 patients with documented posterior temporal abnormalities received both naming tests. As hypothesized, patients with anterior temporal abnormalities demonstrated impaired auditory naming, yet normal range visual naming performance. Patients with posterior temporal abnormalities were impaired in visual naming; however, auditory naming scores were intact. Although these group patterns were statistically significant, on an individual basis, auditory-visual naming asymmetries better predicted whether individual patients had anterior or posterior temporal abnormalities. These behavioral findings are generally consistent with stimulation results, suggesting that modality specificity is inherent in the organization of language, with predictable neuroanatomical correlates. Results also carry clinical implications regarding localizing dysfunction, identifying and characterizing naming deficits, and potentially, in treating neurologically based language disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755088PMC
http://dx.doi.org/10.1017/S1355617709090754DOI Listing

Publication Analysis

Top Keywords

temporal abnormalities
28
posterior temporal
20
visual naming
16
anterior temporal
16
naming
14
patients anterior
12
auditory naming
12
temporal
9
localization cortical
8
naming performance
8

Similar Publications

Imaging Biomarker Studies of Antipsychotic-Naïve First-Episode Schizophrenia in China: Progress and Future Directions.

Schizophr Bull

January 2025

Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China.

Background And Hypothesis: Identifying biomarkers at onset and specifying the progression over the early course of schizophrenia is critical for better understanding of illness pathophysiology and providing novel information relevant to illness prognosis and treatment selection. Studies of antipsychotic-naïve first-episode schizophrenia in China are making contributions to this goal.

Study Design: A review was conducted for how antipsychotic-naïve first-episode patients were identified and studied, the investigated biological measures, with a focus on neuroimaging, and how they extend the understanding of schizophrenia regarding the illness-related brain abnormality, treatment effect characterization and outcome prediction, and subtype discovery and patient stratification, in comparison to findings from western populations.

View Article and Find Full Text PDF

Accessory posterior cerebral artery as a duplicate anterior choroidal artery.

Surg Radiol Anat

January 2025

Department of Neurosurgery, Nakamura Memorial Hospital, South 1, West 14, Chuo-ku, Sapporo, Hokkaido, 060-8570, Japan.

Purpose: Anatomical variations in the anterior choroidal artery (AChA) and/or the posterior cerebral artery (PCA) are rare. Hyperplastic AChA is an anatomical variant supplying both the AChA area and the PCA area. In accessory PCA, a hyperplastic AChA supplies part of the PCA territory.

View Article and Find Full Text PDF

Background: Segmentation of the cochlea in temporal bone computed tomography (CT) is the basis for image-guided otologic surgery. Manual segmentation is time-consuming and laborious.

Purpose: To assess the utility of deep learning analysis in automatic segmentation of the cochleae in temporal bone CT to differentiate abnormal images from normal images.

View Article and Find Full Text PDF

Objective: This study aims to analyze anatomical parameters of the transmission route of sigmoid sinus tinnitus (SST) to explore its mechanism and speculate on possible responsible anatomical abnormalities.

Methods: Clinical data were retrospectively collected from SST and sigmoid sinus wall dehiscence (SSWD) patients suggested by temporal bone high resolution computed tomography (HRCT), with and without tinnitus, at the First Affiliated Hospital of Chongqing Medical University from January 2015 to August 2022. Patients were divided into SSWD tinnitus ( = 61), and non-tinnitus ( = 60) groups based on HRCT features.

View Article and Find Full Text PDF

Masticatory muscle changes on magnetic resonance imaging of dogs with compared to meningoencephalitis of unknown origin.

Front Vet Sci

January 2025

Anderson Moores Veterinary Specialists, Linnaeus Veterinary Limited, Winchester, United Kingdom.

Infectious meningoencephalitides represent an important differential diagnosis for meningoencephalitis of unknown origin (MUO) in dogs. Treatment of the latter requires immunosuppression, but laboratory test results for infectious agents may take several days to return. This study investigated whether the presence of masticatory muscle changes on magnetic resonance imaging (MRI) of the head can be used to distinguish dogs with neosporosis from those with MUO at the time of diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!