The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework.

Environ Microbiol

Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.

Published: December 2009

The hologenome theory of evolution emphasizes the role of microorganisms in the evolution of animals and plants. The theory posits that the holobiont (host plus all of its symbiont microbiota) is a unit of selection in evolution. Genetic variation in the holobiont that can occur either in the host and/or in the microbial symbiont genomes (together termed hologenome) can then be transmitted to offspring. In addition to the known modes of variation, i.e. sexual recombination, chromosomal rearrangement and mutation, variation in the holobiont can occur also via two mechanisms that are specific to the hologenome theory: amplification of existing microorganisms and acquisition of novel strains from the environment. These mechanisms are Lamarckian in that (i) they are regulated by 'use and disuse' (of microbes) and (ii) the variations in the hologenome are transmitted to offspring, thus satisfying also the Lamarckian principle of 'inheritance of acquired characteristics'. Accordingly, the hologenome theory incorporates Lamarckian aspects within a Darwinian framework, accentuating both cooperation and competition within the holobiont and with other holobionts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2009.01995.xDOI Listing

Publication Analysis

Top Keywords

hologenome theory
16
theory evolution
8
lamarckian aspects
8
aspects darwinian
8
darwinian framework
8
variation holobiont
8
holobiont occur
8
hologenome transmitted
8
transmitted offspring
8
hologenome
6

Similar Publications

Functions and regulations of insect gut bacteria.

Pest Manag Sci

October 2024

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.

The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology.

View Article and Find Full Text PDF

Plant-fungal interactions are ubiquitous across ecosystems and contribute significantly to plant ecology and evolution. All orchids form obligate symbiotic relationships with specific fungi for germination and early growth, and the distribution of terrestrial orchid species has been linked to occurrence and abundance of specific orchid mycorrhizal fungi (OMF) in the soil. The availability of OMF can therefore be a habitat requirement that is relevant to consider when establishing management and conservation strategies for threatened orchid species, but knowledge on the spatial distribution of OMF in soil is limited.

View Article and Find Full Text PDF

The domestic pigeon's exceptional phenotypic diversity was key in developing Darwin's Theory of Evolution and establishing the concept of artificial selection. However, unlike its domestic counterpart, its wild progenitor, the rock dove Columba livia has received considerably less attention. Therefore, questions regarding its domestication, evolution, taxonomy, and conservation status remain unresolved.

View Article and Find Full Text PDF

AbstractThis article develops mathematical theory for the population dynamics of microbiomes with their hosts and for holobiont evolution caused by holobiont selection. The objective is to account for the formation of microbiome-host integration. Microbial population dynamic parameters must mesh with the host's for coexistence.

View Article and Find Full Text PDF

Multicellularity in animals: The potential for within-organism conflict.

Proc Natl Acad Sci U S A

August 2022

Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom.

Metazoans function as individual organisms but also as "colonies" of cells whose single-celled ancestors lived and reproduced independently. Insights from evolutionary biology about multicellular group formation help us understand the behavior of cells: why they cooperate, and why cooperation sometimes breaks down. Current explanations for multicellularity focus on two aspects of development which promote cooperation and limit conflict among cells: a single-cell bottleneck, which creates organisms composed of clones, and a separation of somatic and germ cell lineages, which reduces the selective advantage of cheating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!