This article discusses plant virus nanoparticles as a weapon in the war on cancer. The successes and failures of numerous nanoparticle strategies are discussed as a background to consideration of the plant virus nanoparticle approach. To have therapeutic benefit, the advantages of the targeted nanoparticle must outweigh the problems of colloidal stability, uptake by the reticuloendothelial system as well as the requirement for clearance from the body. Biodegradable nanoparticles are considered to have the most promise to address these complex phenomena. After justifying the choice of biodegradable particles, the article focuses on comparison of micelles, liposomes, polymers and modified plant viruses. The structural uniformity, cargo capacity, responsive behavior and ease of manufacturing of plant virus nanoparticles are unique properties that suggest they have a wider role to play in targeted therapy. The loading of chemotherapeutic cargo is discussed, with specific reference to the advantage of reversible transitions of the capsid of Red clover necrotic mosaic virus. These features will be contrasted and compared with other biodegradable 'smart bombs' that target cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.09.23DOI Listing

Publication Analysis

Top Keywords

plant virus
16
virus nanoparticles
12
'smart bombs'
8
plant
5
virus
5
targeting cancer
4
cancer 'smart
4
bombs' equipping
4
equipping plant
4
nanoparticles
4

Similar Publications

Identification of novel rodent and shrew orthohepeviruses sheds light on hepatitis E virus evolution.

Zool Res

January 2025

Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China. E-mail:

The family has seen an explosive expansion in its host range in recent years, yet the evolutionary trajectory of this zoonotic pathogen remains largely unknown. The emergence of rat hepatitis E virus (HEV) has introduced a new public health threat due to its potential for zoonotic transmission. This study investigated 2 464 wild small mammals spanning four animal orders, eight families, 21 genera, and 37 species in Yunnan Province, China.

View Article and Find Full Text PDF

Intein-mediated split Cas9 for genome editing in plants.

Front Genome Ed

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia, China.

Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the transcript into two segments (Split-v1) and three segments (Split-v3).

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

Sesquiterpene lactones (SLs) are a structurally diverse group of secondary metabolites primarily produced by plants, particularly within the Asteraceae family. These compounds play significant roles in plant defense and have been extensively studied for their wide range of biological activities, including antiviral, antimicrobial, anti-inflammatory, and anticancer properties. This review focuses on the biosynthesis, structure-activity relationships, and biological activities of sesquiterpene lactones, with an emphasis on their antiviral potential.

View Article and Find Full Text PDF

Introduction: An effective vaccination policy must be implemented to prevent foot-and-mouth disease (FMD). However, the currently used vaccines for FMD have several limitations, including induction of humoral rather than cellular immune responses.

Methods: To overcome these shortcomings, we assessed the efficacy of levamisole, a small-molecule immunomodulator, as an adjuvant for the FMD vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!