Promoting alpha-secretase cleavage of beta-amyloid with engineered proteolytic antibody fragments.

Biotechnol Prog

Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287, USA.

Published: December 2009

Deposition of beta-amyloid (A beta) is considered as an important early event in the pathogenesis of Alzheimer's Disease (AD), and reduction of A beta levels by various therapeutic approaches is actively being pursued. A potentially non-inflammatory approach to facilitate clearance and reduce toxicity is to hydrolyze A beta at its alpha-secretase site. We have previously identified a light chain fragment, mk18, with alpha-secretase-like catalytic activity, producing the 1-16 and 17-40 amino acid fragments of A beta 40 as primary products, although hydrolysis is also observed following other lysine and arginine residues. To improve the specific activity of the recombinant antibody by affinity maturation, we constructed a single chain variable fragment (scFv) library containing a randomized CDR3 heavy chain region. A biotinylated covalently reactive analog mimicking alpha-secretase site cleavage was synthesized, immobilized on streptavidin beads, and used to select yeast surface expressed scFvs with increased specificity for A beta. After two rounds of selection against the analog, yeast cells were individually screened for proteolytic activity towards an internally quenched fluorogenic substrate that contains the alpha-secretase site of A beta. From 750 clones screened, the two clones with the highest increase in proteolytic activity compared to the parent mk18 were selected for further study. Kinetic analyses using purified soluble scFvs showed a 3- and 6-fold increase in catalytic activity (k(cat)/K(M)) toward the synthetic A beta substrate compared to the original scFv primarily due to an expected decrease in K(M) rather than an increase in k(cat). This affinity maturation strategy can be used to select for scFvs with increased catalytic specificity for A beta. These proteolytic scFvs have potential therapeutic applications for AD by decreasing soluble A beta levels in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.190DOI Listing

Publication Analysis

Top Keywords

alpha-secretase site
12
beta
9
beta levels
8
catalytic activity
8
affinity maturation
8
scfvs increased
8
specificity beta
8
proteolytic activity
8
activity
5
promoting alpha-secretase
4

Similar Publications

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Article Synopsis
  • Posttranslational modification (PTM) of the amyloid precursor protein (APP), particularly lactylation, is linked to the development of Alzheimer's disease (AD), but its specific role is still unclear.
  • Research showed reduced APP lactylation in AD patients and models, identifying lysine 612 as a key lactylation site, which affects APP processing and Aβ generation.
  • A lactyl-mimicking mutant enhanced APP trafficking and reduced cognitive decline by modifying APP interactions, suggesting that targeting APP lactylation may offer new therapeutic avenues for Alzheimer's disease.
View Article and Find Full Text PDF

Sertraline as a Multi-Target Modulator of AChE, COX-2, BACE-1, and GSK-3β: Computational and In Vivo Studies.

Molecules

November 2024

Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.

Alzheimer's disease (AD) is a neurodegenerative disorder associated with the dysregulation of several key enzymes, including acetylcholinesterase (AChE), cyclooxygenase-2 (COX-2), glycogen synthase kinase 3β (GSK-3β), β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), and caspase-3. In this study, machine learning algorithms such as Random Forest (RF), Gradient Boost (GB), and Extreme Gradient Boost (XGB) were employed to screen US-FDA approved drugs from the ZINC15 database to identify potential dual inhibitors of COX-2 and AChE. The models were trained using molecules obtained from the ChEMBL database, with 5039 molecules for AChE and 3689 molecules for COX-2.

View Article and Find Full Text PDF

RNA interference (RNAi) harbors significant potential for treating neurological disorders; nevertheless, limited efficacy has been discerned. The presence of barriers within the central nervous system, coupled with the inherent instability of nucleic acids within biological conditions, poses formidable challenges in advancing effective gene delivery strategies. In this study, we designed and prepared a virus-mimic non-viral gene vector, rabies virus glycoprotein (RVG29)-decorated liposome (f(Lipo)-RVG29), to deliver small interfering RNAs to the brain.

View Article and Find Full Text PDF
Article Synopsis
  • Seven new loganin derivatives (A-G) and fourteen known compounds were extracted from the flowers of Gentiana delavayi Franch, with their structures confirmed using advanced analytical techniques.
  • Compound 7 exhibited strong inhibitory effects on the production of amyloid beta peptides (Aβ40 and Aβ42), which are associated with Alzheimer's disease, indicating its potential as a therapeutic agent.
  • Molecular docking studies showed that compound 7 interacts with the BACE1 enzyme, which plays a key role in Alzheimer's pathology, through both hydrophilic and hydrophobic interactions.
View Article and Find Full Text PDF

Membrane-Targeted Quantum Dot-Based BACE1 Activity Sensors for and Assays.

ACS Appl Mater Interfaces

November 2024

Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.

The need for the development of specific and robust methodologies to elucidate the intricate pathological mechanisms of neurodegenerative diseases and discover effective treatments for prevention and remediation is evident. Alzheimer's disease, in particular, has become more prevalent as the global population has aged. β-Secretase, the β-site amyloid precursor protein cleaving enzyme (BACE1), is the protease that produces the β-amyloid peptide, which is considered one of the driving factors of Alzheimer's disease and an important target for treatment development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!