Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is associated with an elongated polyglutamine tract in ataxin-1, the SCA1 gene product. As summarized in this review, recent studies have clarified the molecular mechanisms of SCA1 pathogenesis and provided direction for future therapeutic approaches. The nucleus is the subcellular site where misfolded mutant ataxin-1 acts to cause SCA1 disease in the cerebellum. The role of these nuclear aggregates is the subject of intensive study. Additional proteins have been identified, whose conformational alterations occurring through interactions with the polyglutamine tract itself or non-polyglutamine regions in ataxin-1 are the cause of SCA-1 cytotoxicity. Therapeutic hope comes from the observations concerning the reduction of nuclear aggregation and alleviation of the pathogenic phenotype by the application of potent inhibitors and RNA interference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10059-009-0095-y | DOI Listing |
Mov Disord
January 2025
Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Background: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder, with balance instability as a feature of the disease. Balance instability often manifests before the onset of obvious ataxic symptoms in patients. However, current clinical scales exhibit limited sensitivity in characterizing changes in pre-ataxic patients.
View Article and Find Full Text PDFJ Neuroimmunol
January 2025
Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey; Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Institute of Neurological Sciences, Neuroimmunology Division, Istanbul, Turkey. Electronic address:
Cerebellum
January 2025
Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
Repeat expansions in the fibroblast growth factor 14 gene (FGF14), associated with spinocerebellar ataxia type 27B (SCA27B), have emerged as a prevalent cause of previously unexplained late-onset cerebellar ataxia. Here, we present a patient with residual symptom of gait ataxia after complicated meningioma surgery, who presented with progressive symptoms of oculomotor disturbances, speech difficulties, vertigo and worsening of gait imbalance, twelve years post-resection. Neuroimaging revealed a surgical resection cavity in the dorsolateral side of the left cerebellar hemisphere, accompanied by gliosis in left cerebellar hemisphere extending into the vermis, extensive non-specific supratentorial periventricular white matter abnormalities, and mild atrophy of the cerebellar vermis.
View Article and Find Full Text PDFNeurol Sci
January 2025
Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium.
Cerebellum
January 2025
Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant (AD) neurodegenerative disorder prevalent in the Americas, particularly in Mexico. Clinical manifestations include progressive ataxia and epilepsy. However, it can exhibit wide phenotypic variability and even reduced penetrance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!