Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides.

Opt Lett

The Edward S. Rogers Sr. Department of Electrical andComputer Engineering, University of Toronto, Toronto, Ontario, Canada.

Published: July 2009

Bragg reflection waveguides are considered as monolithic sources of frequency correlated photon pairs generated using spontaneous-parametric down-conversion in a AlxGa1-xAs material system. The source described here offers unprecedented control over the process bandwidth, enabling bandwidth tunability between 1 nm and 450 nm while using the same wafer structure. This tuning is achieved by exploiting the powerful control over the waveguide dispersion properties afforded by the phase-matching technique used. The offered technology provides a route for realizing electrically pumped, monolithic photon pair sources on a chip with versatile characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.34.002000DOI Listing

Publication Analysis

Top Keywords

bragg reflection
8
reflection waveguides
8
bandwidth control
4
control paired
4
paired photons
4
photons generated
4
generated monolithic
4
monolithic bragg
4
waveguides bragg
4
waveguides considered
4

Similar Publications

Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.

View Article and Find Full Text PDF

Critical Design and Operating Parameters of Active Waveguide Bragg Gratings for Laser Performance.

Micromachines (Basel)

November 2024

Applied Physics Department, Engineering Research Institute of Aragon (I3A), Faculty of Science, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.

Active waveguide Bragg gratings (AWBGs) are promising photonic structures that combine the very efficient reflective properties of a Bragg grating with the power amplification character of rare earths. This combination may lead to a potential monolithic laser under the proper conditions. However, the photonic response of these structures highly depends on the grating design and operating parameters, so modeling its response for their laser performance is a must.

View Article and Find Full Text PDF

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for creating twisted helical cellulose nanocrystal films using 3D printing, achieving unique optical properties.
  • The films exhibit high transparency and dual circular polarization, with different types depending on the printing orientation.
  • These materials have potential applications in photonics, thermal management, and energy efficiency due to their ability to manipulate light in the near-infrared region.
View Article and Find Full Text PDF

We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!