Rubidium vapor holography for noncontact adaptive detection of ultrasound.

Opt Lett

Instituto Nacional de Astrofísica, Optica y Electrónica, Luis Enrique Erro 1, Puebla, Mexico.

Published: July 2009

We describe an adaptive interferometer based on rubidium vapor, which combines a good signal-to-noise ratio with a high cutoff frequency of approximately 1 MHz. These features can be useful for optical detection of ultrasound generated in diffusely scattering objects in the presence of strong environmentally produced vibrations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.34.001964DOI Listing

Publication Analysis

Top Keywords

rubidium vapor
8
detection ultrasound
8
vapor holography
4
holography noncontact
4
noncontact adaptive
4
adaptive detection
4
ultrasound describe
4
describe adaptive
4
adaptive interferometer
4
interferometer based
4

Similar Publications

Ultra-compact and high-precision differential detection method based on liquid crystal polarization grating for miniature atomic magnetometer.

Nanophotonics

November 2024

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

Atomic magnetometers (AMs) that use alkali vapors, such as rubidium, are among the most sensitive sensors for magnetic field measurement. They commonly use polarization differential detection to mitigate common-mode noise. Nevertheless, traditional differential detection optics, including polarization beam splitters (PBS) and half-wave plates, are typically bulky and large, which restricts further reductions in sensor dimensions.

View Article and Find Full Text PDF

Switching, amplifying, and chirping diode lasers with current pulses for high bandwidth quantum technologies.

Rev Sci Instrum

December 2024

University of Basel, Department of Physics, Klingelbergstrasse 82, 4056 Basel, Switzerland.

Article Synopsis
  • - A new set of low-cost devices for controlling diode lasers is introduced, focusing on current modulation to achieve better amplitude and phase control over light, which is typically challenging with direct modulation.
  • - These devices utilize amplifier saturation, resulting in significant performance enhancements compared to traditional modulators, achieving high ON:OFF ratios and producing very short optical pulses with high peak powers.
  • - The combined system can generate powerful optical pulses with adjustable frequency chirps and minimal intensity variation within 65 ns, making it especially useful for advanced scientific applications like quantum memory experiments.
View Article and Find Full Text PDF

We construct a phase-conjugate resonator which passively produces stable pulses that alternate between the probe and the conjugate colors. The requisite phase-conjugate mirror inside the resonator is constructed using non-degenerate four-wave mixing (4WM) in rubidium vapor. The glancing-angle phase-conjugate mirror is a 100% output coupler, and therefore this resonator is unusual in that no light circulates the cavity more than once.

View Article and Find Full Text PDF

The Moon has a tenuous atmosphere produced by space weathering. The short-lived nature of the atoms surrounding the Moon necessitates continuous replenishment from lunar regolith through mechanisms such as micrometeorite impacts, ion sputtering, and photon-stimulated desorption. Despite advances, previous remote sensing and space mission data have not conclusively disentangled the contributions of these processes.

View Article and Find Full Text PDF

We explore light storage in antirelaxation-coated and buffer-gas-filled alkali vapor cells, employing electromagnetically induced transparency (EIT) in warm rubidium vapor. We conduct a comparative study of light storage performance under identical experimental conditions for these two cell types. Using a buffer-gas-filled cell resulted in approximately a tenfold improvement in memory efficiency and storage time compared to antirelaxation-coated cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!