A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase. | LitMetric

To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase.

Cell Cycle

Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.

Published: August 2009

Src protein tyrosine kinase is a master regulator of cell proliferation by modulating cell metabolism, division, survival and migration, thus the mechanisms that regulate Src function are of great interest to cancer research. One emerging mode of Src regulation is its response to reactive oxygen species (ROS). ROS have historically been viewed as damaging agents in cells under oxidative stress, but recent studies establish H(2)O(2) as a secondary messenger to growth signals. A large number of cellular events respond to ROS, and many responses require the activity of Src, suggesting that Src may be a primary target of ROS. How Src kinase responds to ROS has not been established, as conflicting reports of Src activation or inactivation in response to increased concentration of ROS in the cells have been published. To determine how Src directly responds to oxidation, we investigated the effect of the redox environment on purified Src enzyme in vitro. The study reveals that Src is active in the reducing environment, and retains only 8-25% of activity in the absence of reducing agents. The inactivation is mediated by oxidation of Cys277, which leads to Src homodimers linked by a disulfide bond between the Cys277 residues of two Src monomers. A similar inactivation mechanism appears to be conserved in eight of more than 90 PTKs, including three Src family kinases and all four members of the FGFR family. The finding contradicts the view that Src is activated by oxidation, and suggests a complex response by Src to redox regulation. In this Extra View, we examine the conflicting observations in the context of complex mechanisms of Src regulation.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.8.15.9225DOI Listing

Publication Analysis

Top Keywords

src
17
redox regulation
8
src protein
8
protein tyrosine
8
tyrosine kinase
8
src regulation
8
ros
6
direct indirect
4
indirect redox
4
regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!