Comparative juvenile safety testing of new therapeutic candidates: relevance of laboratory animal data to children.

J Toxicol Sci

Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340, USA.

Published: September 2009

Differences in drug response in patients of various ages including children and the elderly are common, often leading to challenges in optimizing dosages and duration of use. For example, developmental changes in renal function can dramatically alter the plasma clearance of compounds with extensive renal elimination and thus can enhance renal and systemic toxicity of these drugs. Preclinical and clinical research of new therapeutics is initially focused on adults, and provides little relevant information for children especially those who are still going through skeletal and organ development. The organ systems in the pediatric population that can be most susceptible are lungs, brain, kidneys, immune, skeletal, and reproductive systems. Considering that significant differences can exist between adult and juvenile populations that may affect drug safety, major regulatory agencies around the world are encouraging and sometimes requiring companies to generate preclinical juvenile animal data to predict for potential drug toxicity in children. However, data generated from such studies are useful only if obtained using the most appropriate species at the most relevant age considering comparability of specific organ system development in question. Other factors in the design of juvenile safety studies should include the indication, existing toxicological data and likely route of human exposure. This report will discuss these factors with a focus on reviewing species-specific developmental schedules for specific target organs and relevance of preclinical data in the design and conduct of clinical pediatric studies. Specific examples will be used to discuss the relationship of preclinical juvenile toxicity observations to risk assessment in humans.

Download full-text PDF

Source
http://dx.doi.org/10.2131/jts.34.sp209DOI Listing

Publication Analysis

Top Keywords

juvenile safety
8
animal data
8
preclinical juvenile
8
will discuss
8
data
5
comparative juvenile
4
safety testing
4
testing therapeutic
4
therapeutic candidates
4
candidates relevance
4

Similar Publications

Where are we in targeting hypoxia-induced pathways in inflammatory arthritis? Current understanding, insights, and future directions.

Int Immunopharmacol

December 2024

Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, Department of Medicine, Queen's University, Ontario, Canada; Rheumatology Clinic, Kingston Health Science Centre, Kingston, Ontario, Canada. Electronic address:

Introduction: Joint tissues affected by inflammatory arthritis (IA) create hypoxic microenvironments that sustain the inflammatory response. Although targeting molecules in hypoxia-induced pathways has provided valuable insights into potential novel therapies for various types of IA, progress remains preclinical, and no clinical trials have been conducted for IA.

Methods: A literature search was conducted to create a narrative review exploring the role of hypoxia and its signaling pathways in IA pathogenesis, as well as the potential and future directions for IA therapies that target hypoxia-induced molecules before moving forward to clinical applications.

View Article and Find Full Text PDF

Administration of AAV-based gene therapies into the intra-cerebrospinal fluid (CSF) compartments via routes such as lumbar puncture (LP) has been implemented as an alternative to intravenous dosing to target the CNS regions. This route enables lower doses, decreases systemic toxicity, and circumvents intravascular pre-existing anti-AAV antibodies. In this study, AAV9-GFP vectors were administered via LP to juvenile cynomolgus macaques with and without pre-existing serum anti-AAV9 antibodies at a 5.

View Article and Find Full Text PDF

Bone loading is a crucial factor that constrains locomotor capacities of terrestrial tetrapods. To date, limb bone strains and stresses have been studied across various animals, with a primary emphasis on consistent bone loading in mammals of different sizes and variations in loading regimes across different clades and limb postures. However, the relationships between body size, limb posture and limb bone loading remain unclear in animals with non-parasagittally moving limbs, limiting our understanding of the evolution of limb functions in tetrapods.

View Article and Find Full Text PDF

Age-Related Cognitive and Volumetric Changes in the Brain of African Grasscutter ( (Temminck, 1827)).

Vet Med Int

December 2024

Physiology-Pharmacology Laboratory, Physiopathology Bioactive Substances and Safety Research Unit, University of Lome, 01BP: 1515, Lome, Togo.

The African grasscutter (AGC) () is the second largest rodent in sub-Saharan Africa. It is bred for its organoleptic and culinary properties but also serves as a research model. The aim of this study was to investigate the relationship between age-related changes in brain weight, brain volume, and spatial and nonspatial memory performance in the AGC.

View Article and Find Full Text PDF

Background: In aquaculture, the secretions of cultured organisms contribute to the development of aquatic antibiotic resistance. However, the antibiotic-induced changes in fish feces remain poorly understood. This study aimed to assess the short-term dynamics of fecal microbiome and antibiotic resistance in juvenile rainbow trout (Oncorhynchus mykiss) upon antibiotic treatment and withdrawal period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!