A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Loss of halophytism by interference with SOS1 expression. | LitMetric

The contribution of SOS1 (for Salt Overly Sensitive 1), encoding a sodium/proton antiporter, to plant salinity tolerance was analyzed in wild-type and RNA interference (RNAi) lines of the halophytic Arabidopsis (Arabidopsis thaliana)-relative Thellungiella salsuginea. Under all conditions, SOS1 mRNA abundance was higher in Thellungiella than in Arabidopsis. Ectopic expression of the Thellungiella homolog ThSOS1 suppressed the salt-sensitive phenotype of a Saccharomyces cerevisiae strain lacking sodium ion (Na(+)) efflux transporters and increased salt tolerance of wild-type Arabidopsis. thsos1-RNAi lines of Thellungiella were highly salt sensitive. A representative line, thsos1-4, showed faster Na(+) accumulation, more severe water loss in shoots under salt stress, and slower removal of Na(+) from the root after removal of stress compared with the wild type. thsos1-4 showed drastically higher sodium-specific fluorescence visualized by CoroNa-Green, a sodium-specific fluorophore, than the wild type, inhibition of endocytosis in root tip cells, and cell death in the adjacent elongation zone. After prolonged stress, Na(+) accumulated inside the pericycle in thsos1-4, while sodium was confined in vacuoles of epidermis and cortex cells in the wild type. RNAi-based interference of SOS1 caused cell death in the root elongation zone, accompanied by fragmentation of vacuoles, inhibition of endocytosis, and apoplastic sodium influx into the stele and hence the shoot. Reduction in SOS1 expression changed Thellungiella that normally can grow in seawater-strength sodium chloride solutions into a plant as sensitive to Na(+) as Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735974PMC
http://dx.doi.org/10.1104/pp.109.137802DOI Listing

Publication Analysis

Top Keywords

wild type
12
interference sos1
8
sos1 expression
8
inhibition endocytosis
8
cell death
8
elongation zone
8
sos1
5
arabidopsis
5
thellungiella
5
na+
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!