Melanocortin 3 receptor (MC3-R) has high affinity and specificity to gamma melanocyte-stimulating hormone (gammaMSH), a natriuretic peptide involved in regulation of blood pressure (BP) and sodium excretion. Recent studies showing increased MC3-R expression and elevated plasma gammaMSH in normal rats fed a high-salt diet support the role of this system in sodium homeostasis. We hypothesized that dysregulation of MC3-R response to dietary salt may contribute to salt retention and BP elevation in salt-sensitive hypertension. We examined renal MC3-R expression, plasma gammaMSH concentration, and response to MC3-R agonist and antagonist in Dahl salt-sensitive (DSS) and Dahl salt-resistant (DSR) rats fed high-salt (8%) or low-salt (0.07%) diets for 3 weeks. Consumption of high-salt diet significantly increased BP in the DSS but not the DSR group. High-salt diet led to a 5-fold increase in plasma gammaMSH and a 2-fold increase in renal MC3-R in DSR rats. Plasma gammaMSH and renal MC3-R abundance in DSS rats were maximally elevated on low-salt diet and remained unchanged on high-salt diet. Administration of MC3-R agonist melanotan II significantly lowered BP and raised fractional Na excretion in the DSR but not the DSS rats consuming high-salt diet. In contrast, MC3-R antagonist SHU9119 significantly raised BP and lowered fractional Na excretion in both groups. Thus, the data suggest that gammaMSH-renal MC3-R pathway is activated and appears to be biologically functional in the DSS rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2009.04.022 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Precision Nutrition for Dairy Foods, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
The prevalence of hypertension in Japan remains high, owing to the high salt content of the typical Japanese diet. Dairy-based foods may reduce blood pressure and hypertension risk. However, dairy consumption is low in Japan, and the relationships between dairy intake and blood pressure or the mechanisms by which dairy products affect blood pressure are not fully understood.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food Science and Engineering, Foshan University, Foshan 528011, China.
Salty taste in foods is a key sensory attribute for appetite enhancement, however, consumption of a high salt diet is associated with a high risk of hypertension, stroke, and heart diseases. To address this issue, the World Health Organization (WHO) has recommended reducing the global per capita salt consumption by 30% by 2025, with adults optimally consuming less than 5 g/day of salt. Therefore, the search for new salty substitutes to reduce salt intake in foods has become a research hotspot.
View Article and Find Full Text PDFPLoS One
January 2025
Physical Culture Institute Ludong University, City Yantai, Shandong Province, China.
The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.
View Article and Find Full Text PDFCureus
December 2024
Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend on Sea, GBR.
Cardiovascular disease (CVDs) is the leading cause of mortality worldwide. Corporate workplaces have been identified as important environmental factors that can increase the risk and severity of CVDs. Evidence indicates that the risk and severity of CVDs can be effectively reduced by mitigating modifiable behavioural and intermediate risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!