A passive sampler with improved performance for collecting gaseous and particulate phase polycyclic aromatic hydrocarbons in air.

Environ Sci Technol

Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Published: June 2009

A passive sampler which can be used to collect both gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) in air was previously developed and calibrated. The sampler was successfully used in a field study in North China Plain. However, the relatively low uptake rate for particulate phase PAHs prevented it from being applied in nonseverely contaminated environment. The sampler was redesigned to increase the uptake rate for particulate phase PAHs and calibrated in the field for individual PAH compounds of various molecular sizes. The effect of a fine-screen-mesh wrapping on the performance of the sampler was tested. It was found that the sampling efficiencies of the sampler for various PAH compounds were different depending on their molecular weights. For particulate phase PAHs, the uptake rates for high molecular weight compounds, which are favorably associated with fine particles, were generally lower than those for low molecular weight ones. Two calibration equations with molecular weight as an independent variable were developed to predictthe ambient air concentrations of gaseous and particulate phase PAHs based on the results of the passive sampling. The uptake rates of the sampler were different for various PAH compounds. On average, the uptake rates of the sampler for gaseous and particulate phase PAHs were 0.38 +/- 0.51 m3/d and 0.61 +/- 1.41 m3/d, respectively. The latter was 2 orders of magnitude higher than the old model. The sampler was less efficient than active sampler for collecting fine particles in the air and such bias in sampled size distribution can be moderated by a fine-screen-mesh wrapping. However, the wrapping could also reduce the sampling efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es900522vDOI Listing

Publication Analysis

Top Keywords

particulate phase
28
phase pahs
20
gaseous particulate
16
pah compounds
12
uptake rates
12
molecular weight
12
sampler
9
passive sampler
8
phase polycyclic
8
polycyclic aromatic
8

Similar Publications

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

With the continuous intensification of global warming, the reduction and ultimate phase-out of coal combustion is an inevitable trend in the future global energy transformation. This study comprehensively analyzed the impact of phasing out coal combustion on global emissions and concentrations of air pollutants, radiative fluxes, meteorology and climate using Community Earth System Model 2 (CESM2). The results indicate that after the global phase-out of coal combustion, there is a marked decrease in the concentrations of sulfur dioxide (SO), nitrogen oxides (NO) and fine particulate matter (PM), with some regions experiencing a reduction of exceeding 50%.

View Article and Find Full Text PDF

Global human exposure of atmospheric polybrominated diphenyl ethers: Variation patterns of exposure pathways and phase contributions.

Environ Int

January 2025

School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China. Electronic address:

At present, there are still certain limitations in the research on the pathways and phase contributions of semi-volatile organic compounds (SVOCs) to human exposure in the atmosphere. This study clarified the contribution rates of inhalation and dermal exposure of particulate and gaseous polybrominated diphenyl ethers (PBDEs) on a global scale, as well as their influencing factors and mechanisms. Data on gaseous PBDEs were collected from 125 cities across 38 countries and regions to predict size-resolved particulate exposure levels, utilizing our previous method for inhalation alongside a size-dependent prediction method for dermal exposure developed in this study.

View Article and Find Full Text PDF

Airborne particulate matter (PM) in urban environments poses significant health risks by penetrating the respiratory system, with concern over lung-deposited surface area (LDSA) as an indicator of particle exposure. This study aimed to investigate the diurnal trends and sources of LDSA, particle number concentration (PNC), elemental carbon (EC), and organic carbon (OC) concentrations in Los Angeles across different seasons to provide a comprehensive understanding of the contributions from primary and secondary sources of ultrafine particles (UFPs). Hourly measurements of PNC and LDSA were conducted using the DiSCmini and Scanning Mobility Particle Sizer (SMPS), while OC and EC concentrations were measured using the Sunset Lab EC/OC Monitor.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.

Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.

Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!