The nature of regional zoning of the prevalence of dirofilariasis in Russia was first established and a map reflecting the structure of an area with the identification of three zones (low, moderate, and stable transmission risks) was drawn up. In Russia, natural and climatic conditions are favorable for the development of transmitting mosquitoes and larvae of Dirofilaria to the invasion stage in the body of the transmitter to the south of the latitude of 58 degrees north in the European part and Western Siberia and to the south of the latitude of 50 degrees north in the Far East. The region of dirofilariasis covers 53 subjects of the Russian Federation, in 39 subjects (including 29 in the European part and 10 in the Asian part) of which 564 cases of dirofilariasis were notified in 1915-2008. 68.44% of dirofilariasis cases were registered in the endemic area in 11 subjects of the Russian Federation in the stable transmission risk zone while in the moderate and low transmission risk zones these amounted to 31.55% in 28 subjects. Information on the area of dirofilariasis is needed to estimate its incidence in man in different regions of Russia, which will assist in diagnosing this zoogenous transmissible helminthiasis.
Download full-text PDF |
Source |
---|
Sci Adv
January 2025
Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia.
High-resolution cryo-electron microscopy (cryo-EM) requires costly 200- to 300-keV cryo-transmission electron microscopes (cryo-TEMs) with field emission gun (FEG) sources, stable columns, constant-powered lenses, autoloader, and direct electron detectors (DED). Recent advances in 100-keV imaging with the emergence of sub-200-keV optimized DED technology promises the development of more affordable cryo-TEMs. So far, 100-keV imaging has required microscopes with FEG sources.
View Article and Find Full Text PDFPLoS One
January 2025
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Muenster, Germany.
Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.
Swine influenza virus (SIV) is a highly contagious pathogen that poses significant economic challenges to the swine industry and carries zoonotic potential, underscoring the need for vigilant surveillance. In this study, we performed a comprehensive genetic and molecular analysis of H3N2 SIV isolates obtained from 372 swine samples collected in Shandong Province, China. Phylogenetic analysis revealed two distinct genotypes.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, China.
In this paper, the mathematical model of the aviation pressure servo valve controlled actuator system(APSVCAS) considering nonlinearity is established based on a jet pipe pressure servo valve in this article. And the dynamic characteristics and stability boundary of APSVCAS are analyzed, which provides theoretical guidance for the actual composition and the determination of parameters. Firstly, a jet-tube two-stage pressure servo valve for aviation hydraulic system is designed, and an accurate model of APSVCAS is established considering multiple nonlinear factors.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!