A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts. | LitMetric

The present study presents a new approach for evaluating in vitro cytotoxicity of nanoparticles. The approach is based on American National Standard ISO 10993-5. Hepatoma HepG2 and fibroblast NIH3T3 cell lines were incubated with nanoparticles, and their associated extracts were derived at 70 and 121 degrees C. Nanoparticles proposed as potential biomedical imaging probes were evaluated on the basis of the detection of metabolic activities and cell-morphology changes. In general, nanoparticles incubated directly with cells showed higher cytotoxicity than their associated extracts. CdSe and core-shell CdSe@ZnS quantum dots resulted in low cell viability for both cell lines. The cytotoxicity of the quantum dots was attributed to the Cd ion and the presence of the nanoparticle itself. A statistically significant (p < 0.05) decrease in cell viability was found in higher dosage concentrations. Rare earth nanoparticles and their extracts appear to affect NIH3T3 cells only, with cell viability as low as 71.4% +/- 4.8%. Magnetic nanoparticles have no observable effects on the cell viabilities for both cell lines. In summary, we found the following: (1) both direct incubation and extracts of nanoparticles are required for complete assessment of nanoparticle cytotoxicity, (2) the rare earth oxide nanoparticles are less cytotoxic than the Cd-based quantum dots, and (3) the extent of cytotoxicity is dependent upon the cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32533DOI Listing

Publication Analysis

Top Keywords

cell lines
12
quantum dots
12
cell viability
12
nanoparticles
9
vitro cytotoxicity
8
nanoparticles extracts
8
cell
8
associated extracts
8
rare earth
8
extracts
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!