AI Article Synopsis

Article Abstract

Genetic and epigenetic alterations during development of pancreatic ductal adenocarcinomas (PDACs) are well known. This study investigates genetic and epigenetic data together with tumor biology to find specific alterations responsible for metastasis formation. Using 16 human PDAC cell lines in a murine orthotopic PDAC model, local infiltration and metastatic spread were assessed by standardized dissemination scores. The cell lines were further classified into 3 hierarchical groups according to their metastatic potential. Their mRNA and microRNA (miRNA) expression was profiled via mRNA-microarray as well as Taqman Low Density Array, and validated by single quantitative RT-PCR and Western blotting. In the highly metastatic group, a significant induction of EP300 targeting miRNAs miR-194 (fold change: 26.88), miR-200b (fold change: 61.65), miR-200c (fold change: 19.44) and miR-429 (fold change: 21.67) (p < 0.05) was detected. Corresponding to this, decreased expression of EP300 mRNA (p < 0.0001) and protein (p < 0.05) were detected in the highly metastatic PDAC cell lines with liver metastases compared to the nonmetastatic or marginally metastatic cell lines, while no correlation with local tumor growth was found. In conclusion, epigenetic alterations with upregulated EP300 targeting miRNAs miR-194, miR-200b, miR-200c and miR-429 are related to reduced EP300 mRNA and protein in PDAC. These results demonstrate that miRNAs might be able to modulate the expression of metastasis-specific suppressor genes and metastatic behavior in PDAC, suggesting diagnostic and therapeutic opportunities for EP300 and its targeting miRNAs in PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.24695DOI Listing

Publication Analysis

Top Keywords

cell lines
16
fold change
16
ep300 targeting
12
targeting mirnas
12
ductal adenocarcinomas
8
genetic epigenetic
8
epigenetic alterations
8
pdac cell
8
highly metastatic
8
mirnas mir-194
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!