Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes.

Lab Chip

Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Published: July 2009

Cells respond to geometrical cues, as well as to biochemical and mechanical stimuli. Recent progress in micro- and nano-technology has allowed researchers to create microbeads, micro-circular islands, and microposts, that can be used to examine the effect of geometrical cues on cellular behavior. Knowledge of changes in cell mechanics and morphology in response to geometric cues is important for understanding the basic behavior of cells during development and pathological processes. Most previous research in this area has focused on cell responses to two-dimensional planar or rectilinear structures. Very few studies have examined cell responses to three-dimensional curved structures because of the difficulty of fabricating such microstructures. Here we describe a novel method for the fabrication of convex and concave microstructures by use of a thin poly(dimethylsiloxane) (PDMS) membrane, SU-8 shadow mask, and negative air pressure without using any complicated silicon processes. We successfully fabricated concave and convex microstructures, with base diameters of 200-300 microm and depth (or height) of 50-150 microm (aspect ratios up to 1 : 0.5), and used these microstructures to study the responses of cultured L929 mouse fibroblast cells and human mesenchymal stem cells. These cells clearly sensed the three-dimensional microscale curvature and actively "escaped" from concave patterns, but not from those which were convex. Thus, it appears that microscale concave structures suppress cell adhesion and proliferation. We hypothesized that this might relate to deformation of the plasma membrane and subsequent opening of membrane channels. We anticipate that our system will be useful for various bio-MEMS (micro electro mechanical system) applications, including formation of uniformly-sized embryoid bodies, embryonic stem cell differentiation, and the fabrication of cell docking devices, microbioreactors, and microlenses as well as cell mechanics study.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b820955cDOI Listing

Publication Analysis

Top Keywords

concave convex
8
convex microstructures
8
geometrical cues
8
cell mechanics
8
cell responses
8
cell
7
concave
5
microstructures
5
cells
5
study cellular
4

Similar Publications

Understanding the Curvature Effect on the Structure and Bonding of MoC Nanoparticles on Carbon Supports.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.

View Article and Find Full Text PDF

Wood-plastic composites (WPC) combine the properties of polymers and wood, providing an attractive alternative to traditional materials, particularly for terrace flooring. When exposed to various environmental conditions, WPCs are affected by factors, such as water and ultraviolet (UV) radiation. Although most test methods for assessing the durability of these products have focused on changes in mechanical properties and linear dimensions, out-of-plane deformations (concavity and convexity) are often overlooked.

View Article and Find Full Text PDF

Age-stratified anatomical differences of orbital floor and medial orbital wall blowout fractures.

Graefes Arch Clin Exp Ophthalmol

January 2025

Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan.

Purpose: To define the anatomical variance between orbital floor and medial orbital wall blowout fractures, and its change with age.

Methods: This was a retrospective, observational study analyzing data from 557 patients with isolated blowout fractures of the orbital floor or medial orbital wall. Axial and quasi-sagittal CT images were analyzed to compare radiologic data on orbital wall morphology between fracture site groups and among age groups.

View Article and Find Full Text PDF

Secondary intention healing (SIH) describes wounds healing from the base upwards, without direct closure. This starts with granulation of the wound, followed by re-epithelialisation and contraction. The surgeon and patient need to weigh up advantages and disadvantages of SIH versus other reconstruction methods.

View Article and Find Full Text PDF

Background: Adolescent idiopathic scoliosis (AIS) is characterized by an asymmetrical formation of the spine and ribcage. Recent work provides evidence of asymmetrical (right versus left side) paraspinal muscle size, composition, and activation amplitude in adolescents with AIS. Each of these factors influences muscle force generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!