Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with a complex spectrum of cellular and molecular characteristics including several dramatic changes in the populations of peripheral leukocytes. These changes include general leukopenia, activation of B and T cells, and maturation of granulocytes. The manifestation of SLE in peripheral blood is central to the disease but is incompletely understood. A technique for rigorously characterizing changes in mixed populations of cells, microarray expression deconvolution, has been applied to several areas of biology but not to SLE or to blood. Here we demonstrate that microarray expression deconvolution accurately quantifies the constituents of real blood samples and mixtures of immune-derived cell lines. We characterize a broad spectrum of peripheral leukocyte cell types and states in SLE to uncover novel patterns including: specific activation of NK and T helper lymphocytes, relationships of these patterns to each other, and correlations to clinical variables and measures. The expansion and activation of monocytes, NK cells, and T helper cells in SLE at least partly underlie this disease's prominent interferon signature. These and other patterns of leukocyte dynamics uncovered here correlate with disease severity and treatment, suggest potential new treatments, and extend our understanding of lupus pathology as a complex autoimmune disease involving many arms of the immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699551 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006098 | PLOS |
Adv Sci (Weinh)
December 2024
Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
Dysregulated IL-10 producing regulatory B cells (Bregs) are associated with the progression of systemic lupus erythematosus. An immunomodulatory role of heat shock proteins (HSPs) is implicated in autoimmune diseases. However, the molecular basis underlying the role of Hspa13 in regulating Bregs function and lupus pathogenesis remains unclear.
View Article and Find Full Text PDFNeurol Neurochir Pol
December 2024
Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
Introduction And State Of The Art: Systemic lupus erythematosus (SLE) is an autoimmune disease that affects many organs throughout its course, most frequently the joints, skin and kidneys. Both the central (CNS) and peripheral (PNS) nervous systems are also often affected. T he involvement of the CNS has a negative prognosis in lupus patients.
View Article and Find Full Text PDFWest Afr J Med
August 2024
Department of Medicine, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. Email: Tel: 08063241116.
Background/objective: Rheumatic diseases (RMDs) are among the leading health burdens and causes of disability globally. Interestingly, they are on the rise due to the increasingly ageing population. Inflammatory RMDs are not left behind in the rise, especially in Africa, where they were thought to be rare as there has been increasing reportage of these diseases in recent years.
View Article and Find Full Text PDFIran Biomed J
December 2024
Nursing student, School of Nursing and Midwifery, Student Research Committee, Tehran University of Medical Science, Tehran, Iran.
Front Immunol
December 2024
Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Paris Cité, Paris, France.
Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by an overactive immune response, particularly involving excessive production of type I interferons. This overproduction is driven by the phosphorylation of IRF7, a crucial factor in interferon gene activation. Current treatments for SLE are often not very effective and can have serious side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!