Aim: To share the experiences of an adapted problem-based learning approach to audit within a palliative care setting.

Method: A small group learning approach to design and undertake an audit.

Result: This approach was a positive learning experience within clinical practice that enabled the group to develop their knowledge of audit planning, design, analysis and reporting as well as their problem-solving, written and communication skills.

Conclusion: The facilitated group approach promoted shared learning, problem solving and the opportunity to develop audit skills within a supportive environment. Overall, this approach enabled the participants to gain confidence by engaging in learning within the work setting.

Download full-text PDF

Source
http://dx.doi.org/10.12968/ijpn.2009.15.6.42990DOI Listing

Publication Analysis

Top Keywords

learning approach
12
adapted problem-based
8
problem-based learning
8
audit skills
8
palliative care
8
learning
6
approach
6
approach aid
4
aid development
4
development clinical
4

Similar Publications

Aim: The purpose of this study is to compare the efficacy of an artificial intelligence (AI)-based care plan learning strategy with standard training techniques in order to determine how it affects nursing students' learning results in newborn resuscitation.

Methods: Seventy third-year nursing students from a state university in Türkiye participated in the study. They were split into two groups: the experimental group, which received care plans based on AI, and the control group, which received traditional instruction.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) involves challenges in communication and social interaction, including challenges in recognizing emotions. Existing technological solutions aim to improve social behaviors in individuals with ASD by providing learning aids. This paper presents a real-time environmental translator designed to enhance social behaviors in individuals with ASD using sensory substitution.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of backscattered light from tissues and provides valuable insights into the birefringence properties of biological tissues. Contrastive unpaired translation (CUT) was used in this study to generate a synthetic PS-OCT image from a single OCT image. The challenges related to extensive data requirements relying on labeled datasets using only pixel-wise correlations that make it difficult to efficiently regenerate the periodic patterns observed in PS-OCT images were addressed.

View Article and Find Full Text PDF

Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow convergence and a tendency to reach local optima when dealing with multidimensional problems. To address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!