We measured the Raman scattering of graphene deposited nanohole arrays. As the sample was azimuthally rotated, periodicities of 7.5 degrees and 5 degrees were revealed for the 2700 cm(-1) and 1600 cm(-1) Raman lines of graphene, respectively. This is contrary to the scattered laser line azimuthal symmetry of 30 degrees for the hole array alone. When a reference dye (stilbene) was deposited on the graphenated platforms, its Raman peak shifted as a function of incident (tilt) angle; this was contrary to the unshifted 1600 cm(-1) peak of graphene itself. The data suggest strong coupling between the molecular vibrations as portrayed by Raman spectra and surface plasmon polariton waves propagating along the graphene surface.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/29/295502DOI Listing

Publication Analysis

Top Keywords

1600 cm-1
8
raman
5
raman spectroscopy
4
spectroscopy graphenated
4
graphenated anodized
4
anodized aluminum
4
aluminum oxide
4
oxide substrates
4
substrates measured
4
measured raman
4

Similar Publications

Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.

View Article and Find Full Text PDF

Objective: This study aimed to identify structural changes in age-related curved hair (referred to as "YUGAMI" hair in Japanese) induced by cyclical extension using infrared (IR) spectroscopy coupled with chemometrics, such as multivariate curve resolution (MCR) and two-dimensional correlation spectroscopy (2DCOS).

Methods: The hair fibres were stretched at a strain level of 0.3-N, and this operation was counted as one cycle and was repeated 500 cycles.

View Article and Find Full Text PDF

Hemoglobinopathies, hereditary disorders affecting the structure or production of hemoglobin, were detected by routine HbA measurements by capillary electrophoresis (CE) at the University Hospital Motol, Prague. The potential of ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FTIR) spectroscopy for the detection and characterization of hemoglobinopathies was investigated. FTIR spectra were recorded with a very high resolution (0.

View Article and Find Full Text PDF

Background: The potent antioxidant lycopene has attracted a large amount of research attention given its potential health benefits. We aimed to assess the antimicrobial, anti-inflammatory, and antioxidant properties of lycopene (Lyc), selenium nanoparticles (Se-NPs), and lycopene selenium nanoparticles (Lyc-Se-NPs).

Methods: FTIR, polydispersity index, and zeta potential evaluations provided a complete characterization of the synthesized Lyc-Se-NPs.

View Article and Find Full Text PDF

AlBC with High Ambipolar Mobility Driven by a Unique B-C Framework.

J Am Chem Soc

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China.

The development of materials with high ambipolar mobility is pivotal for advancing multifunctional applications, yet such materials remain scarce. Presently, cubic boron arsenide (BAs) stands out as the premier ambipolar material, demonstrating an ambipolar mobility of ∼1600 cm V s at room temperature [ 2022, 377, 433 and 2022, 377, 437]. Herein, we illustrate that semiconducting AlBC, featuring a nonclathrate B-C framework in which a C atom bonds to the vertices of four distorted hexagonal antiprism B units via quasi-sp hybridization, is predicted to possess ambipolar carrier transport behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!