Increased expression of alpha(6)beta(4) integrin in several epithelial cancers promotes tumor progression; however, the mechanism underlying its transcriptional regulation remains unclear. Here, we show that depletion of homeodomain-interacting protein kinase 2 (HIPK2) activates beta(4) transcription that results in a strong increase of beta(4)-dependent mitogen-activated protein kinase and Akt phosphorylation, anchorage-independent growth, and invasion. In contrast, stabilization of HIPK2 represses beta(4) expression in wild-type p53 (wtp53)-expressing cells but not in p53-null cells or cells expressing mutant p53, indicating that HIPK2 requires a wtp53 to inhibit beta(4) transcription. Consistent with our in vitro findings, a strong correlation between beta(4) overexpression and HIPK2 inactivation by cytoplasmic relocalization was observed in wtp53-expressing human breast carcinomas. Under loss of function of HIPK2 or p53, the p53 family members TAp63 and TAp73 strongly activate beta(4) transcription. These data, by revealing that beta(4) expression is transcriptionally repressed in tumors by HIPK2 and p53 to impair beta(4)-dependent tumor progression, suggest that loss of p53 function favors the formation of coactivator complex with the TA members of the p53 family to allow beta(4) transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-09-0244DOI Listing

Publication Analysis

Top Keywords

beta4 transcription
16
protein kinase
12
tumor progression
12
beta4
8
homeodomain-interacting protein
8
p53
8
beta4 expression
8
hipk2 p53
8
p53 family
8
hipk2
6

Similar Publications

Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium.

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the optimal surface roughness (Ra) of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/Al₂O₃) implants for mouse gingival junctional epithelial cell (JE-1) adhesion and soft tissue sealing in vitro.

Methods: Titanium and Ce-TZP/Al₂O₃ disks were prepared, mechanically polished (M), and mirror-polished (Mr). The surface morphology of each disk was evaluated, and the Ra was measured using scanning electron microscopy and atomic force microscopy.

View Article and Find Full Text PDF

Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression.

View Article and Find Full Text PDF

Introduction: Metastatic prostate cancer (PCa) presents a significant challenge in oncology due to its high mortality rate and the absence of effective biomarkers for predicting patient outcomes. Building on previous research that highlighted the critical role of the long noncoding RNA (lncRNA) H19 and cell adhesion molecules in promoting tumor progression under hypoxia and estrogen stimulation, this study aimed to assess the potential of these components as prognostic biomarkers for PCa at the biopsy stage.

Methods: This research utilized immunohistochemistry and droplet digital PCR to analyze formalin-fixed paraffin-embedded (FFPE) biopsies, focusing on specific markers within the H19/cell adhesion molecules pathway.

View Article and Find Full Text PDF

Background: Immune-associated genes play vital roles in the tumorigenesis, progression and immunotherapy responses of malignant tumors. This study aimed to comprehensively evaluate the role and mechanism of novel immune-associated gene integrin β4 () in the progression and immune microenvironment of lung adenocarcinoma (LUAD).

Methods: There were 770 immune-associated genes curated from NanoString PanCancer Immune Profiling Panel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!