The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5 x 10(-7)micromol/L AVG, 12.5 x 10(-8)micromol/L AVG, and 11.8 x 10(-8)micromol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5 x 10(-7)micromol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5 x 10(-7)micromol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var. japonica Maxim. seedlings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1744-7909.2009.00835.x | DOI Listing |
BMC Plant Biol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.
Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.
Chemphyschem
January 2025
University of Namur, Department of Chemistry, Rue de Bruxelles, 61, 5000, Namur, BELGIUM.
The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China.
Electrolysis of carbon dioxide (CO) in acid offers a promising route to overcome CO loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO activation and HER suppression.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan. Electronic address:
Plant responses to the water environment are mediated by ethylene (submergence response) and abscisic acid (ABA, drought response). Ethylene is perceived by a family of histidine kinase receptors (ETR-HKs), which regulate the activity of the downstream B3 Raf-like (RAF) kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in an ethylene-dependent manner. We previously demonstrated in the moss Physcomitrium patens that SNF1-related protein kinase 2 (SnRK2), an essential kinase in osmostress responses in land plants, is activated by the B3-RAF kinase ARK, which is also regulated by ETR-HKs in an ABA- and osmostress-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!