The polarization of sterol-enriched lipid microdomains has been linked to morphogenesis and cell movement in diverse cell types. Recent biochemical evidence has confirmed the presence of lipid microdomains in plant cells; however, direct evidence for a functional link between these microdomains and plant cell growth is still lacking. Here, we reported the involvement of lipid microdomains in NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) signaling in Picea meyeri pollen tube growth. Staining with di-4-ANEPPDHQ or filipin revealed that sterol-enriched microdomains were polarized to the growing tip of the pollen tube. Sterol sequestration with filipin disrupted membrane microdomain polarization, depressed tip-based ROS formation, dissipated tip-focused cytosolic Ca(2+) gradient and thereby arrested tip growth. NOX clustered at the growing tip, and corresponded with the ordered membrane domains. Immunoblot analysis and native gel assays demonstrated that NOX was partially associated with detergent-resistant membranes and, furthermore, that NOX in a sterol-dependent fashion depends on membrane microdomains for its enzymatic activity. In addition, in vivo time-lapse imaging revealed the coexistence of a steep tip-high apical ROS gradient and subapical ROS production, highlighting the reported signaling role for ROS in polar cell growth. Our results suggest that the polarization of lipid microdomains to the apical plasma membrane, and the inclusion of NOX into these domains, contribute, at least in part, to the ability to grow in a highly polarized manner to form pollen tubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2009.03955.x | DOI Listing |
Biol Cell
January 2025
CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.
Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.
Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.
Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.
Int J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy.
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes.
View Article and Find Full Text PDFCells
January 2025
Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes and disease pathogenesis. While fungal, plant, and algal cells use microlipophagy, the most prominent form of lipophagy in animal cells is macrolipophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!