Experimental and theoretical evaluation of rotating orthogonal polarization imaging.

J Biomed Opt

University of Nottingham, Electrical Systems and Optics Research Division, Faculty of Engineering, University Park, Nottingham NG7 2RD, United Kingdom.

Published: September 2009

AI Article Synopsis

Article Abstract

Rotating orthogonal polarization imaging is a new technique that provides quantitative measurements of the polarization properties of scattering media, such as tissue, which are free from surface reflections. The technique is investigated using both experiments and Monte Carlo simulations of a polarizing target embedded within a scattering medium. The technique is sensitive to the polarization properties of the target up to a depth of 17 mean free paths. Preliminary images of bovine tendon, lamb tendon, chicken breast, and human skin are also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.3130268DOI Listing

Publication Analysis

Top Keywords

rotating orthogonal
8
orthogonal polarization
8
polarization imaging
8
polarization properties
8
experimental theoretical
4
theoretical evaluation
4
evaluation rotating
4
polarization
4
imaging rotating
4
imaging technique
4

Similar Publications

Deceptive illusory cues can influence orthogonally directed manual length estimations.

Atten Percept Psychophys

January 2025

School of Kinesiology, Louisiana State University, 1250 Huey P. Long Field House, 50 Field House Drive, Baton Rouge, LA, 70803, USA.

We examined participants' abilities to manually estimate one of two perpendicular line segment lengths using curved point-to-point movements. Configurations involved symmetrical, unsymmetrical, and no bisection in upright and rotated orientation alterations to vertical-horizontal (V-H) illusions, where people often perceive longer vertical than horizontal segments for equal segment lengths. Participants used two orthogonally directed movements for length estimations: positively proportional (POS) - where greater fingertip displacement involved longer length estimation between configuration intersection start position and fingertip end, and negatively proportional (NEG) - where greater fingertip displacement from the screen edge start position toward configuration intersection involved a shorter length estimation between configuration intersection and fingertip end.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks.

View Article and Find Full Text PDF

Restoring rotational symmetry of multicomponent wavefunctions with nuclear orbitals.

J Chem Phys

January 2025

Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden.

In this work, we present a non-orthogonal configuration interaction (NOCI) approach to address the rotational corrections in multicomponent quantum chemistry calculations where hydrogen nuclei and electrons are described with orbitals under Hartree-Fock (HF) and density functional theory (DFT) frameworks. The rotational corrections are required in systems such as diatomic (HX) and nonlinear triatomic molecules (HXY), where localized broken-symmetry nuclear orbitals have a lower energy than delocalized orbitals with the correct symmetry. By restoring rotational symmetry with the proposed NOCI approach, we demonstrate significant improvements in proton binding energy predictions at the HF level, with average rotational corrections of 0.

View Article and Find Full Text PDF

A new projector, Orthogonal-Distance Ray-tracer Varying-Full Width at Half Maximum (OD-RT-VF), was developed to model a shift-variant elliptical point-spread function (PSF) response to improve the image quality of a preclinical dual-rotation PET system. Approach: The OD-RT-VF projector models different FWHM values of the PSF in multiple directions, using half-height and half-width tube-of-response (ToR) values. The OD-RT-VF method's performance was evaluated against the original OD-RT method and a ToR model with constant response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!