The absolute force sensitivities of colloidal probes comprised of atomic force microscope, or AFM, cantilevers with microspheres attached to their distal ends are measured. The force sensitivities are calibrated through reference to accurate electrostatic forces, the realizations of which are described in detail. Furthermore, the absolute accuracy of a common AFM force calibration scheme, known as the thermal noise method, is evaluated. It is demonstrated that the thermal noise method can be applied with great success to colloidal probe calibration in air and in liquid to yield force measurements with relative standard uncertainties below 5%. Techniques to combine the electrostatics-based determination of the AFM force sensitivity with measurements of the colloidal probe's thermal noise spectrum to compute noncontact estimates of the displacement sensitivity and spring constant are also developed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3152335DOI Listing

Publication Analysis

Top Keywords

thermal noise
12
colloidal probe
8
atomic force
8
force sensitivities
8
afm force
8
noise method
8
force
7
accurate noncontact
4
noncontact calibration
4
colloidal
4

Similar Publications

Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC.

Imaging Neurosci (Camb)

August 2024

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise-the dominant contributing noise component in high-resolution fMRI.

View Article and Find Full Text PDF

A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.

J Magn Reson

January 2025

Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:

Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.

View Article and Find Full Text PDF

Quantum technology exploits fragile quantum electronic phenomena whose energy scales demand ultra-low electron temperature operation. The lack of electron-phonon coupling at cryogenic temperatures makes cooling the electrons down to a few tens of millikelvin a non-trivial task, requiring extensive efforts on thermalization and filtering high-frequency noise. Existing techniques employ bulky and heavy cryogenic metal-powder filters, which prove ineffective at sub-GHz frequency regimes and unsuitable for high-density quantum circuits such as spin qubits.

View Article and Find Full Text PDF

HRP, or horseradish peroxidase, is a reporter enzyme with extensive use in biotechnological applications. We previously reported the purification and characterization of two anionic peroxidases from L. var (black radish) roots.

View Article and Find Full Text PDF

Background: The main goal of the study was to find the magnetic resonance imaging (MRI) parameters that optimize contrast between tissue and thermal lesions produced by focused ultrasound (FUS) using T1-weighted (T1-W) and T2-weighted (T2-W) fast spin echo (FSE) sequences.

Methods: FUS sonications were performed in porcine tissue using a single-element FUS transducer of 2.6 MHz in 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!