A photocatalytic noble metal-free system for the generation of hydrogen has been constructed using Eosin Y (1) as a photosensitizer, the complex [Co(dmgH)(2)pyCl](2+) (5, dmgH = dimethylglyoximate, py = pyridine) as a molecular catalyst, and triethanolamine (TEOA) as a sacrificial reducing agent. The system produces H(2) with an initial rate of approximately 100 turnovers per hour upon irradiation with visible light (lambda > 450 nm). Addition of free dmgH(2) greatly increases the durability of the system addition of 12 equiv of dmgH(2) (vs cobalt) to the system produces approximately 900 turnovers of H(2) after 14 h of irradiation. The rate of H(2) evolution is maximum at pH = 7 and decreases sharply at more acidic or basic pH. Spectroscopic study of photolysis solutions suggests that hydrogen production occurs through protonation of a Co(I) species to give a Co(III) hydride, which then reacts further by reduction and protolysis to give Co(II) and molecular hydrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja903044n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!