In this study we examined whether established signal transduction cascades, p44/42 mitogen-activated protein kinase (ERK1/2) and Jun N-terminal kinases (JNK) pathways, are altered in N2a neural cells in response to proteasome inhibition. Additionally, we sought to elucidate the relative contribution of these signal transduction pathways to the multiple downstream effects of proteasome inhibition. Our data indicate that ERK1/2 and JNK are activated in response to proteasome inhibition. Washout of proteasome inhibitor (MG132) results in an enhancement of ERK1/2 activation and amelioration of JNK activation. Treatment with an established MAPK inhibitor resulted in an increase in proteasome inhibitor toxicity, and incubation with JNK inhibitor was observed to attenuate proteasome inhibitor toxicity significantly. Subsequent studies demonstrated that inhibition of ERK1/2 and JNK activity does not alter the gross increase in ubiquitinated protein following proteasome inhibitor administration. Similarly, ERK1/2 and JNK activity do not appear to play a role in the disruption of polysomes following proteasome inhibitor administration in neural cells. Together these data indicate that ERK1/2 and JNK activation may play differential roles in modulating neurochemical disturbances and neurotoxicity induced by proteasome inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875064 | PMC |
http://dx.doi.org/10.1002/jnr.22147 | DOI Listing |
PI31 ( P roteasome Inhibitor of 31 ,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31.
View Article and Find Full Text PDFMultiple myeloma is characterized by malignant cells which produce high amounts of monoclonal immunoglobulin. Myeloma cells are, therefore, dependent on effective protein degradation. Proteasomal protein degradation is targeted by proteasome inhibitors in routine care.
View Article and Find Full Text PDFJ Adv Res
January 2025
Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:
Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.
Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.
J Adv Res
January 2025
Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:
Introduction: Triple-negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer, and effective therapeutic strategies are needed. Estrogen-related receptor alpha (ERRα) is considered a promising target for managing TNBC.
Objectives: Here, we aimed to screen natural products to find downregulator of ERRα and elucidate its mechanism of action.
Nat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!