A learning algorithm was used to manipulate optical pulse shapes and optimize retinal isomerization in bacteriorhodopsin, for excitation levels up to 1.8 x 10(16) photons per square centimeter. Below 1/3 the maximum excitation level, the yield was not sensitive to pulse shape. Above this level the learning algorithm found that a Fourier-transform-limited (TL) pulse maximized the 13-cis population. For this optimal pulse the yield increases linearly with intensity well beyond the saturation of the first excited state. To understand these results we performed systematic searches varying the chirp and energy of the pump pulses while monitoring the isomerization yield. The results are interpreted including the influence of 1-photon and multiphoton transitions. The population dynamics in each intermediate conformation and the final branching ratio between the all-trans and 13-cis isomers are modified by changes in the pulse energy and duration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708765PMC
http://dx.doi.org/10.1073/pnas.0904589106DOI Listing

Publication Analysis

Top Keywords

retinal isomerization
8
isomerization bacteriorhodopsin
8
learning algorithm
8
pulse
5
control retinal
4
bacteriorhodopsin high-intensity
4
high-intensity regime
4
regime learning
4
algorithm manipulate
4
manipulate optical
4

Similar Publications

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

Machine Learning Optimization of Non-Kasha Behavior and of Transient Dynamics in Model Retinal Isomerization.

J Phys Chem Lett

December 2024

Center for Quantum Information and Quantum Control and Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

Designing a model of retinal isomerization in rhodopsin, the first step in vision, that accounts for both experimental transient and stationary state observables is challenging. Here, multiobjective Bayesian optimization is employed to refine the parameters of a minimal two-state-two-mode () model describing the photoisomerization of retinal in rhodopsin. The optimized retinal model predicts excitation wavelength-dependent fluorescence spectra that closely align with experimentally observed non-Kasha behavior in the nonequilibrium steady state.

View Article and Find Full Text PDF

Modern potential energy surfaces have shifted attention to molecular simulations of chemical reactions. While various methods can estimate rate constants for conformational transitions in molecular dynamics simulations, their applicability to studying chemical reactions remains uncertain due to the high and sharp energy barriers and complex reaction coordinates involved. This study focuses on the thermal cis-trans isomerization in retinal, employing molecular simulations and comparing rate constant estimates based on one-dimensional rate theories with those based on sampling transitions and grid-based models for low-dimensional collective variable spaces.

View Article and Find Full Text PDF

Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!