A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation. | LitMetric

The stratospheric CO(2) oxygen isotope budget is thought to be governed primarily by the O((1)D)+CO(2) isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO(2) isotopologue (16)O(13)C(18)O, in concert with (18)O and (17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric (16)O(13)C(18)O, observed as proportions in the polar vortex that are higher than in any naturally derived CO(2) sample to date. We show, through photochemical experiments, that lower (16)O(13)C(18)O proportions observed in the midlatitudes are determined primarily by the O((1)D)+CO(2) isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher (16)O(13)C(18)O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O((1)D)+CO(2). We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO(2) or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric (16)O(13)C(18)O enrichments may impose additional isotopic constraints on biosphere-atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710640PMC
http://dx.doi.org/10.1073/pnas.0902930106DOI Listing

Publication Analysis

Top Keywords

stratospheric 16o13c18o
12
meridional variation
12
large unexpected
8
variation stratospheric
8
o1d+co2 isotope
8
isotope exchange
8
exchange reaction
8
proportions polar
8
polar vortex
8
16o13c18o proportions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!