Growth arrest-specific protein 6 (Gas 6) is involved in inflammatory kidney diseases, vascular remodeling, cell adhesion, and thrombus formation. We explored a role for Gas 6 in aldosterone-induced target organ damage. We observed that Gas 6 was upregulated in rats with high aldosterone levels. Mineralocorticoid receptor blockade prevented target organ damage and decreased the elevated Gas 6 expression. Vascular smooth muscle cells given aldosterone increased their Gas 6 expression in vitro. To test the pathophysiological relevance, we investigated the effects of deoxycorticosterone acetate (DOCA) on Gas 6 gene-deleted ((-/-)) mice. After 6 weeks DOCA, Gas 6(-/-) mice developed similar telemetric blood pressure elevations compared to wild-type mice but were protected from cardiac hypertrophy. Cardiac expression of interleukin 6 and collagen IV was blunted in Gas 6(-/-) mice, indicating reduced inflammation and fibrosis. Gas 6(-/-) mice also had an improved renal function with reduced albuminuria, compared to wild-type mice. Renal fibrosis and fibronectin deposition in the kidney were also reduced. Gas 6 deficiency reduces the detrimental effects of aldosterone on cardiac and renal remodeling independent of blood pressure reduction. Gas 6 appears to play a role in mineralocorticoid receptor-mediated target organ damage. Furthermore, because warfarin interferes with Gas 6 protein expression, the findings could be of clinical relevance for anticoagulant choices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.129460 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!