In chloroplasts, binding of a c'-heme to cytochrome b(6) on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c(6) on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b(6) in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b(6)f complexes even in the absence of c'-heme binding to cytochrome b(6). Finally, we present a sequential model for apo- to holo-cytochrome b(6) maturation integrated within the assembly pathway of b(6)f complexes in the thylakoid membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712960 | PMC |
http://dx.doi.org/10.1083/jcb.200812025 | DOI Listing |
J Exp Bot
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan USA.
Plastid-localized plastoglobules (PGs) are monolayer lipid droplets typically associated with the outer envelope of thylakoid membranes in chloroplasts. The size and number of PGs can vary significantly in response to different environmental stimuli. Since the early 21st century, a variety of proteins attached to the surface of PGs have been identified and experimentally characterized using advanced biotechnological techniques, revealing their biological functions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.
The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Astrobiology Center, National Institutes of Natural Sciences, Mitaka 181-8588, Japan.
Heterogeneous distribution of PSI and PSII in thick grana in shade chloroplasts is argued to hinder spillover of chlorophyll excitations from PSII to PSI. To examine this dogma, we measured fluorescence induction at 77K at 690 nm (PSII) and 760 nm (mostly PSI) in the leaf discs of Spinacia oleracea, Cucumis sativus and shade tolerant Alocasia odora, grown at high and low light, and quantified their spillover capacities. PSI fluorescence (FI) consists of the intrinsic PSI fluorescence (FIα) and fluorescence caused by excitations spilt over from PSII (FIβ).
View Article and Find Full Text PDFNat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Pyrenoid-based CO-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.
Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!