Candida albicans readily forms biofilms on the surface on indwelling medical devices, and these biofilms serve as a source of local and systemic infections. It is estimated that 27% of nosocomial C. albicans bloodstream infections are polymicrobial, with Staphylococcus aureus as the third most common organism isolated in conjunction with C. albicans. We tested whether S. aureus and C. albicans are able to form a polymicrobial biofilm. Although S. aureus formed poor monoculture biofilms in serum, it formed a substantial polymicrobial biofilm in the presence of C. albicans. In terms of architecture, S. aureus formed microcolonies on the surface of the biofilm, with C. albicans serving as the underlying scaffolding. In addition, S. aureus matrix staining revealed a different phenotype in polymicrobial versus monomicrobial biofilms, suggesting that S. aureus may become coated in the matrix secreted by C. albicans. S. aureus resistance to vancomycin was enhanced within the polymicrobial biofilm, required viable C. albicans, and was in part mediated by C. albicans matrix. However, the growth or sensitivity to amphotericin B of C. albicans is not altered in the polymicrobial biofilm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737866 | PMC |
http://dx.doi.org/10.1128/AAC.00657-09 | DOI Listing |
Int Endod J
January 2025
School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
Introduction: Biofilms may show varying adherence strengths to dentine. This study quantified the shear force required for the detachment of multispecies biofilm from the dentine using fluid dynamic gauging (FDG) and computation fluid dynamics (CFD). To date this force has not been quantified.
View Article and Find Full Text PDFAPMIS
January 2025
Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.
Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
Background/objectives: Biofilm-associated infections, particularly those involving Candida auris and Staphylococcus aureus, pose significant challenges in clinical settings due to their resilience and resistance to conventional treatments. This study aimed to synthesize novel triazole derivatives containing a piperazine ring via click chemistry and evaluate their efficacy in disrupting biofilms formed by these pathogens.
Methods: Triazole derivatives were synthesized using click chemistry techniques.
Microorganisms
December 2024
Department of Infectious Disease, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea.
The risk factors and outcomes associated with persistent bacteremia are not well-defined. This retrospective cohort study analyzed 214 cases of bacteremia diagnosed between 2005 and 2022 at two university hospitals, focusing on the clinical and microbiologic characteristics and outcomes of persistent bacteremia. Persistent bacteremia, defined as the detection of for ≥5 days after the initial blood culture, occurred in 25.
View Article and Find Full Text PDFMicrob Pathog
February 2025
Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria.
Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!