The design of new bioactive scaffolds mimicking the physiologic environment present during tissue formation is an important frontier in biomaterials research. Herein, we evaluated scaffolds prepared from blends of two biopolymers: silk fibroin and hyaluronan. Our rationale was that such blends would allow the combination of silk fibroin's superior mechanical properties with the biological characteristics of hyaluronan. We prepared scaffolds with porous microstructures by freeze-drying aqueous solutions of silk fibroin and hyaluronan and subsequent incubation in methanol to induce water insolubility of silk fibroin. Hyaluronan acted as an efficient porogenic excipient for the silk fibroin scaffolding process, allowing the formation of microporous structures within the scaffolds under mild processing conditions. Mesenchymal stem cells were seeded on silk fibroin/hyaluronan scaffolds and cultured for three weeks. Histology of the constructs after cell culture showed enhanced cellular ingrowth into silk fibroin/hyaluronan scaffolds as compared to plain silk fibroin scaffolds. In the presence of tissue-inductive stimuli, in vitro stem cell culture on silk fibroin/hyaluronan scaffolds resulted in more efficient tissue formation when measured by glycosaminoglycan and type-I and type-III collagen gene expression, as compared to plain silk fibroin scaffolds. In conclusion, our data encourages further exploration of silk fibroin/hyaluronan scaffolds as biomimetic platform for mesenchymal stem cells in tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.06.008 | DOI Listing |
Pharmaceutics
January 2025
School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK.
: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.
View Article and Find Full Text PDFMolecules
January 2025
Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil.
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Centre for Precision Manufacturing, DMEM, University of Strathclyde, Glasgow G1 1XJ, UK.
Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This study introduces elliptical vibration micro-turning as a method for producing silk fibroin particles in the form of cutting chips to serve as carriers for drug delivery systems.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
National Research Council, Institute for Organic Synthesis and Photoreactivity (CNR-ISOF), Via P. Gobetti 101, 40129 Bologna, Italy.
In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, low immunogenicity, and adaptability. Among these proteins, keratin, extracted from waste wool, and fibroin, derived from cocoons, exhibit exceptional properties such as mechanical strength, cell adhesion capabilities, and suitability for various fabrication methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!