KSR-1 is a scaffold protein that is essential for Ras-induced activation of the highly conserved RAF-MEK-ERK kinase module. Previously, we identified a close homolog of KSR-1, called KSR-2, through structural homology-based data mining. In order to further understand the role of KSR-2 in MAPK signaling, we undertook a functional proteomics approach to elucidate the dynamic composition of the KSR-2 functional complex in HEK-293 cells under conditions with and without TNF-alpha stimulation. We found nearly 100 proteins that were potentially associated with KSR-2 complex and 43 proteins that were likely recruited to the super molecular complex after TNF-alpha treatment. Our results indicate that KSR-2 may act as a scaffold protein similar as KSR-1 to mediate the MAPK core (RAF-MEK-ERK) signaling but with a distinct RAF isoform specificity, namely KSR-2 may only mediate the A-RAF signaling while KSR-1 is responsible for transducing signals only from c-RAF. In addition, KSR-2 may be involved in the activation of many MAPK downstream signaling molecules such as p38 MAPK, IKAP, AIF, and proteins involved in ubiquitin-proteasome, apoptosis, cell cycle control, and DNA synthesis and repair pathways, as well as mediating crosstalks between MAPK and several other signaling pathways, including PI3K and insulin signaling. While interactions with these molecules are not known for KSR-1, it's reasonable to hypothesize that KSR-1 may also play a similar role in mediating these downstream signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2009.06.016DOI Listing

Publication Analysis

Top Keywords

ksr-2
8
signaling
8
scaffold protein
8
mapk signaling
8
downstream signaling
8
signaling pathways
8
mapk
6
ksr-1
6
proteomic characterization
4
characterization dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!