Endothelial hyperpermeability is a significant problem in vascular inflammation associated with trauma, ischaemia-reperfusion injury, sepsis, adult respiratory distress syndrome, diabetes, thrombosis and cancer. An important mechanism underlying this process is increased paracellular leakage of plasma fluid and protein. Inflammatory stimuli such as histamine, thrombin, vascular endothelial growth factor and activated neutrophils can cause dissociation of cell-cell junctions between endothelial cells as well as cytoskeleton contraction, leading to a widened intercellular space that facilitates transendothelial flux. Such structural changes initiate with agonist-receptor binding, followed by activation of intracellular signalling molecules including calcium, protein kinase C, tyrosine kinases, myosin light chain kinase, and small Rho-GTPases; these kinases and GTPases then phosphorylate or alter the conformation of different subcellular components that control cell-cell adhesion, resulting in paracellular hypermeability. Targeting key signalling molecules that mediate endothelial-junction-cytoskeleton dissociation demonstrates a therapeutic potential to improve vascular barrier function during inflammatory injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828491PMC
http://dx.doi.org/10.1017/S1462399409001112DOI Listing

Publication Analysis

Top Keywords

endothelial hyperpermeability
8
signalling molecules
8
molecular mechanisms
4
endothelial
4
mechanisms endothelial
4
hyperpermeability implications
4
implications inflammation
4
inflammation endothelial
4
hyperpermeability problem
4
problem vascular
4

Similar Publications

Myocardial ischemia-reperfusion injury increases myocardial microvascular permeability, leading to enhanced microvascular filtration and interstitial fluid accumulation that is associated with greater microvascular obstruction and inadequate myocardial perfusion. A burst of reactive oxygen species and inflammatory mediators during reperfusion causes myosin light chain kinase (MLCK)-dependent endothelial hyperpermeability, which is considered a preventable cause of reperfusion injury. In the present study, a single intravenous injection of MLCK peptide inhibitor PIK7 (2.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement.

Pharmaceuticals (Basel)

November 2024

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.

: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression.

View Article and Find Full Text PDF

[The potential of BCL6B as a therapeutic target for chorioretinal vascular lesions].

Nihon Yakurigaku Zasshi

January 2025

Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University.

The ocular tissue is one of the most densely populated tissues in the body with extremely small blood vessels, and vascular lesions have been reported to be a factor in vision loss and visual field defects in many ocular diseases. Currently, vascular endothelial growth factor (VEGF)-targeted agents are the first line of treatment for intraocular vascular lesions, however, there are some cases in which they are not fully effective. Therefore, we explored pathogenic molecules other than VEGF, aiming to develop new molecular-targeted therapy.

View Article and Find Full Text PDF

Vascular Basement Membrane Fragmentation in Keloids and the Expression of Key Basement Membrane Component Genes.

Plast Reconstr Surg Glob Open

December 2024

From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.

Background: Keloids are growing scars that arise from injury to the reticular dermis and subsequent chronic local inflammation. The latter may be promoted by vascular hyperpermeability, which permits the ingress of chronic inflammatory cells/factors. Cutaneous capillaries consist of endothelial cells that generate, and are anchored by, a vascular basement membrane (VBM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!