AI Article Synopsis

  • The study tested a DNA vaccine that combines the ESAT-6 protein with ubiquitin to combat Mycobacterium tuberculosis in mice.
  • Mice receiving the ubiquitin-fused vaccine showed a stronger immune response, indicated by increased levels of Th1-type cytokines and T-cell activity.
  • The findings suggest that this fusion vaccine enhances immune protection against tuberculosis by improving specific cellular immune responses.

Article Abstract

The present study evaluated the immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis. BALB/c mice were vaccinated with plasmid DNA encoding ESAT-6 protein, ubiquitin-fused ESAT-6 DNA vaccine (UbGR-ESAT-6), pcDNA3-ubiquitin and blank vector, respectively. ESAT-6 DNA vaccine immunization induced a Thl-polarized immune response. The production of Thl-type cytokine (IFN-gamma) and proliferative T-cell responses was enhanced significantly in mice immunized with UbGR-ESAT-6 fusion DNA vaccine, compared to non-fusion DNA vaccine. This fusion DNA vaccine also resulted in an increased relative ratio of IgG(2a) to IgG(l) and the cytotoxicity of T cells. Thus, the present study demonstrated that the UbGR-ESAT-6 fusion DNA vaccine inoculation improved antigen-specific cellular immune responses, which is helpful for protection against tuberculosis infection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2009.00138.xDOI Listing

Publication Analysis

Top Keywords

dna vaccine
32
esat-6 dna
16
immune response
12
ubiquitin-fused esat-6
12
fusion dna
12
dna
9
cellular immune
8
response elicited
8
elicited ubiquitin-fused
8
vaccine
8

Similar Publications

Development of monoclonal antibodies for ASFV K205R protein and precise mapping of linear antigenic epitopes.

Int J Biol Macromol

January 2025

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

African swine fever virus (ASFV) is a complex DNA virus belonging to the family Asfarviridae. The outbreak of African swine fever (ASF) has caused huge economic losses to the pig farming industry. The K205R protein is a key target for detecting ASFV antibodies and represents an important antigen for early serologic diagnosis.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions.

Mol Biotechnol

January 2025

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.

The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!