The virulence functions of Yersinia enterocolitica include the pYV-encoded Yop proteins and YadA adhesin as well as the chromosome-encoded enterotoxin, Yst. The yop and yadA genes form a temperature-activated regulon controlled by the transcriptional activator VirF. Gene virF, also localized on pYV, is itself thermoinduced in the absence of other pYV genes. The enterotoxin yst gene is silent in some collection strains including strain W22703. This paper describes two Tn5-Tc1 chromosomal insertion mutants of W22703 transcribing virF, and hence the yop and yadA genes, at low temperature. These mutants also resumed their production of Yst, with its typical temperature dependence. Both mutations were insertions in the same gene called ymoA for 'Yersinia modulator'. The cloned ymoA gene fully complemented the two mutations. Several properties of the mutants suggest that ymoA encodes a histone-like protein. According to the nucleic acid sequence, the product of ymoA is an 8064 Da protein rich in aspartic acid (9%), glutamic acid (9%) and lysine (10.5%), but the predicted amino acid sequence shows no similarity with any described histone-like protein. This work supports recent reports which propose a role for DNA topology and bacterial chromatin structure in thermoregulation of virulence functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.1991.tb01875.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!