In recent years, calcium titanate (CaTiO(3)) and carbon-containing materials have gained much attention in a number of biomedical material researches. To maximize the advantages of both materials, we developed a novel alkoxide method to get "calcium titanate with calcium carbonate" (CaTiO(3)-CaCO(3)). The objective was to evaluate the crystallinity and elemental composition of CaTiO(3)-CaCO(3) prepared by alkoxide method, CaTiO(3)-aC elaborated by modified thermal decomposition method, commercially-prepared CaTiO(3), and the effect of these materials on the bone marrow stromal cell. Hydroxyapatite was used as positive control material. We examined the cellular proliferation, osteoblastic differentiation, and mineralization of KUSA/A1 cells cultured with the materials. The results showed that CaTiO(3)-CaCO(3) and CaTiO(3)-aC contained evidence of calcium carbonate enhancing cell proliferation, osteoblastic differentiation, and mineralization. On the contrary, the commercially-prepared CaTiO(3) revealed absence of calcium carbonate with lower cell response than the other groups. The results indicated that calcium carbonate could play a key role in the cell response of CaTiO(3) material. In conclusion, our findings suggest that CaTiO(3)-CaCO(3) could be considered an important candidate as a biomaterial for medical and dental applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32551 | DOI Listing |
Molecules
December 2024
CP2M-ESCPE Lyon, CNRS, University Claude Bernard Lyon 1, UMR 5128, 43 Bd du 11 Nov. 1918, CEDEX, 69616 Villeurbanne, France.
TiO:Eu nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol-gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO substrate. All the nanomaterials were thoroughly characterized using Eu elemental analysis, powder X-ray diffraction (XRD), scanning (SEM), transmission (TEM), scanning transmission electron microscopy (STEM), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and photoluminescence (PL).
View Article and Find Full Text PDFCell Rep Phys Sci
December 2024
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Porphyrinic metal-organic frameworks (MOFs) offer high surface areas and tunable catalytic and optoelectronic properties, making them versatile candidates for applications in phototherapy, drug delivery, photocatalysis, electronics, and energy storage. However, a key challenge for industrial integration is the rapid, cost-effective production of suitable sizes. This study introduces Zr(IV) alkoxides as metal precursors, achieving ultrafast (∼minutes) and high-yield (>90%) synthesis of three well-known Zr-based porphyrinic MOF nanocrystals: MOF-525, PCN-224, and PCN-222, each with distinct topologies.
View Article and Find Full Text PDFMolecules
October 2024
Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10 000 Zagreb, Croatia.
BODIPY compounds are important organic dyes with exceptional spectral and photophysical properties and numerous applications in different scientific fields. Their widespread applications have flourished due to their easy structural modifications, which enable the preparation of different molecular structures with tunable spectral and photophysical properties. To date, researchers have mostly devoted their efforts to modifying BODIPY -position or pyrrole rings, whereas the substitution of fluorine atoms remains largely unexplored.
View Article and Find Full Text PDFJ Fluoresc
November 2024
CHRIST (Deemed to be University), Bengaluru, 560029, India.
Chem Sci
October 2024
Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
A key challenge in polymer synthesis is to develop new methods that enable block copolymers to be prepared from mixed monomer feedstock. The emerging switchable polymerization catalysis can generate block copolymers with well-defined structures and tunable properties from monomer mixtures. However, constrained by the reactivity of monomers and the incompatibility of different polymerization mechanisms, this method is usually confined to oxygenated monomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!