The influence of surface energy on early adherent events of osteoblast on titanium substrates.

J Biomed Mater Res A

Department of Oral and Maxillofacial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.

Published: April 2010

AI Article Synopsis

  • The study focuses on how surface energy affects the early adhesion of human alveolar osteoblasts (AOBs), which is critical for bone integration with implant materials.
  • Cells were cultured on two types of titanium disks: hydrophobic (SLA) and hydrophilic (modSLA), with modSLA showing significantly better cell attachment and defined actin organization.
  • The findings suggest that higher surface energy on titanium enhances initial cell adhesion, likely by influencing adhesion-related molecules such as focal adhesion kinase (FAK).

Article Abstract

Surface energy of implant material is one of the important factors in the process of osseointegration. How surface energy regulates the signaling pathway of osteoblasts, however, is not well understood. Cell adhesion is one of the first steps essential to subsequent proliferation and differentiation of bone cells before tissue formation. Our present study was designed to investigate how surface energy may influence the early adhesion of human alveolar osteoblasts (AOBs). Substrates applied were two groups of titanium disks: (1) hydrophobic sandblasted and acid-etched (SLA) surfaces; (2) chemically modified hydrophilic SLA (modSLA) ones. Cell morphology and cell attachment were examined by scanning electron microscopy (SEM). Defined cytoskeletal actin organization was immunohistochemically examined using confocal laser scanning microscopy. RT-PCR was applied to detect and to compare the expression of focal adhesion kinase (FAK) of osteoblasts cultured on the two groups of substrates. The attachment rates of AOBs cultured on modSLA substrates were significantly higher than the cells on SLA ones within 3 h. AOBs on modSLA developed more defined actin stress fibers after 6 h of attachment. FAK expression was comparably higher on modSLA after 6 h. Within the limitation of the current study, higher surface energy of titanium surfaces enhanced the cell adhesion in the early stage of cell response and may work through influencing the expression of adhesion-associated molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32542DOI Listing

Publication Analysis

Top Keywords

surface energy
20
cell adhesion
8
energy
5
cell
5
influence surface
4
energy early
4
early adherent
4
adherent events
4
events osteoblast
4
osteoblast titanium
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Proc Natl Acad Sci U S A

January 2025

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.

Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.

View Article and Find Full Text PDF

With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial.

View Article and Find Full Text PDF

Deciphering the Energy Transfer Mechanism Across Metal Halide Perovskite-Phthalocyanine Interfaces.

Adv Sci (Weinh)

January 2025

Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.

Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!