A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. | LitMetric

Pre-osteoblast adhesion attracts increasing interest in both medicine and dentistry. However, how this physiological event alters osteoblast phenotype is poorly understood. We therefore attempted to address this question by investigating key biochemical mechanism that governs pre-osteoblast adhesion on polystyrene surface. Importantly, we found that cofilin activity was strongly modulated by PP2A (Ser/Thr phosphatase), while cell-cycle was arrested. Accordingly, we observed that the profile of cofilin phosphorylation (at Ser03) was similar to phospho-PP2A (at Tyr307). Also, it is plausible to suggest during pre-osteoblast adhesion that PP2A phosphorylation at Y307 was executed by phospho-Src (Y416). In addition, it was observed that MAPKp38, but not MAPK-erk, played a key role on pre-osteoblast adhesion by phosphorylating MAPKAPK-2 and ATF-2 (also called CRE-BP1). Also, the up-modulation of RhoA reported here suggests its involvement at the beginning of osteoblast attachment, while Akt remained active during all periods. Altogether, our results clearly showed that osteoblast adhesion is under an intricate network of signaling molecules, which are responsible to guide their interaction with substrate mainly via cytoskeleton rearrangement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.22236DOI Listing

Publication Analysis

Top Keywords

pre-osteoblast adhesion
16
osteoblast adhesion
8
adhesion
6
road understanding
4
osteoblast
4
understanding osteoblast
4
adhesion cytoskeleton
4
cytoskeleton organization
4
organization rearranged
4
rearranged distinct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!